
X11-BASIC
VERSION 1.27

User Manual

(C) 1997-2020 by Markus Hoffmann

(kollo@users.sourceforge.net)

(see http://x11-basic.sourceforge.net/)
Latest revision: November 18, 2020

X11-Basic is a dialect of the BASIC programming language with graphics capa-

bility that integrates features like shell scripting, cgi-programming and full graphical

visualization into the easy to learn BASIC language on modern computers. The

syntax is most similar to the old GFA-Basic on ATARI-ST implementation. Old GFA-

programs should run with only few changes.

About this document

This document describes the features of X11-Basic. You will find information about

the X11-Basic interpreter (the program xbasic under Unix or xbasic.exe under

Windows) and the compiler (the program xbc under UNIX or xbc.exe under Win-

dows) as well as the language itself. For a more compact description you may want

to read the x11basic(1) man-page or the man-page of the X11-Basic compiler

xbc(1).

The latest information and updates and new versions of X11-Basic can be found

at

http://x11-basic.sourceforge.net/.

2

X11-Basic
CONTENTS

1 About X11-Basic 1

2 Usage 5

2.1 Installing X11-Basic . 5

2.2 Using the X11-Basic Interpreter 10

2.2.1 Using the X11-Basic Interpreter under UNIX, Linux 10

2.2.2 Using the WINDOWS Version of X11-Basic 11

2.2.3 The Android Version of X11-Basic 13

2.2.4 Command line parameters 18

2.3 Editing X11-Basic programs . 19

2.4 The Byte-code Compiler and the Virtual Machine 21

2.5 Using the X11-Basic to C translator 24

2.6 The X11-Basic compiler manager xbc 25

2.7 The ANSI-Basic to X11-Basic converter 27

2.8 Using GFA-BASIC programs . 27

3 Programming in X11-Basic 28

3.1 The dialect of X11-BASIC . 28

3.2 Getting started . 29

3.3 Your first X11-Basic program . 29

3.4 Program structure . 31

3.5 General Syntax . 31

3.6 The very BASIC commands: PRINT, INPUT, IF and GOTO 33

3.7 Variables . 34

3.7.1 The scope of a Variable . 36

3.7.2 Data types . 36

3.7.3 Variable naming . 37

3.7.4 Numbers . 38

3.7.5 Strings . 39

3.7.6 Arrays . 40

3.7.7 Arbitrary precision numbers 40

3.8 Arithmetics and Calculations . 43

3.8.1 Expressions and Conditions 43

3.8.2 Operators . 43

i

CONTENTS CONTENTS

3.8.3 String processing . 47

3.8.4 Arrays . 48

3.9 Procedures and Functions . 50

3.9.1 Procedures . 50

3.9.2 Functions . 51

3.9.3 Parameters and local variables 53

3.10 Simple Input/Output . 54

3.10.1 Printing data to the console 55

3.10.2 Screen control . 56

3.10.3 Formatting output with PRINT USING 57

3.10.4 Gathering User Input . 62

3.11 Flow Control . 63

3.11.1 Conditional and endless loops 65

3.12 Diagnostics . 67

3.13 Address Spaces . 68

3.14 Graphics: Drawing and Painting 68

3.15 Reading from and Writing to Files 68

3.16 Internet and bluetooth connections, special files and sockets 69

3.16.1 Local inter process communication: Pipes 69

3.16.2 World-Wide communication: Sockets 70

3.17 Bluetooth connections . 74

3.18 Accessing USB devices . 77

3.19 Data within the program . 78

3.20 Dynamic-link libraries . 79

3.20.1 Using shared libraries and C functions 79

3.21 Memory management . 81

3.21.1 Allocating memory . 82

3.21.2 Shared memory . 82

3.22 Other features . 83

4 Graphical User Interface 84

4.1 ALERT and FILESELECT . 84

4.2 Resources . 85

4.2.1 Objects . 87

4.2.2 The gui file format . 96

4.3 Menus . 98

ii

CONTENTS CONTENTS

5 Quick reference 100

5.1 Reserved variable names . 100

5.2 Conditions . 101

5.3 Numbers and Constants . 101

5.4 Operators . 101

5.5 Abbreviations . 102

5.6 Interpreter Commands . 102

5.7 Flow Control Commands . 103

5.8 Console Input/Output Commands 104

5.9 File Input/Output Commands . 104

5.10 Variable Manipulation Commands 105

5.11 Memory Manipulation Commands 106

5.12 Math commands . 106

5.13 Other Commands . 107

5.14 Graphic commands . 108

5.14.1 Drawing and painting . 108

5.14.2 Screen/Window commands 109

5.14.3 GUI/User input commands 110

5.15 File Input/Output functions . 110

5.16 Variable/String Manipulation functions 111

5.17 Data compression and coding functions 112

5.18 Memory Manipulation functions 113

5.19 Logic functions . 114

5.20 Math functions . 114

5.20.1 Angles . 116

5.20.2 Trigonometric functions . 116

5.20.3 Random numbers . 116

5.21 System functions . 117

5.22 Graphic functions . 117

5.23 Other functions . 118

5.24 Subroutines and Functions . 118

5.25 Error Messages . 119

6 Command Reference 126

6.1 Syntax templates . 126

6.2 A . 127

6.3 B . 156

iii

CONTENTS CONTENTS

6.4 C . 175

6.5 D . 219

6.6 E . 247

6.7 F . 283

6.8 G . 316

6.9 H . 342

6.10 I . 351

6.11 J . 371

6.12 K . 374

6.13 L . 377

6.14 M . 405

6.15 N . 435

6.16 O . 445

6.17 P . 463

6.18 Q . 503

6.19 R . 505

6.20 S . 546

6.21 T . 612

6.22 U . 630

6.23 V . 643

6.24 W . 654

6.25 X . 665

7 Frequently asked Questions 671

8 Compatibility 674

8.1 General remarks . 674

8.2 GFA-Basic compatibility . 677

8.3 Ideas for future releases of X11-Basic 685

A GNU License 689

Index 695

iv

X11-Basic
1 ABOUT X11-BASIC

X11-Basic is a dialect of the BASIC programming language with graphics and

sound which integrates features like traditional BASIC language syntax, structured

programming, shell scripting, cgi programming, powerful math, and full graphical

visualization into the easy to learn BASIC language on modern computers.

The syntax of X11-Basic is most similar to GFA-Basic in its original ancient

implementation for the ATARI ST. Old GFA-programs should run with only a few

changes. Also DOS/QBASIC programmers will feel comfortable.

X11-Basic is appropriate for virtually all programming tasks. For science and

engineering X11-Basic has already proven its capability of handling complex sim-

ulation and control problems. For system programs, X11-Basic has high level lan-

guage replacements for low level programming features that are much easier to

read, understand, and maintain. For all applications, X11-Basic is designed to

support rapid development of compact, efficient, reliable, readable, portable, well

structured programs.

X11-Basic supports complex numbers and complex math, as well as arbitrary

precision numbers and calculations where needed, as well as very fast 32bit inte-

ger and 64bit floating point operations, very powerful string handling functions for

character strings of any length and any content.

X11-Basic supports the principle ’small is beautiful’. Its aim is to use the fewest

system resources and execute with the highest speed. X11-Basic meets in this, by

providing very powerful built-in commands and functions, and a very fast compiler

producing even faster applications. X11-Basic lets you write an application with

very little effort, giving you full control over your application. In case the X11-Basic

commands and functions aren’t sufficient, you can easily use the native shell to

execute other programs and commands, or you will be able to use any shared

library on the system, which can be dynamically linked.

Because it is an interpretive language each new step in your program can be

tested quickly providing you with instant feedback. And when you finished your

program you can use the X11-Basic compiler to create a very fast stand-alone

executable.

1

CHAPTER 1. ABOUT X11-BASIC

Portability

The X11-Basic language was designed to be platform independant as much as

possible. You can expect X11-Basic programs run on many operating systems giv-

ing nearly the same look and feel everywhere. X11-Basic programs are portable.

X11-Basic is designed to run on many platforms with extremely low resources.

It has originally been developped for UNIX workstations and Linux-systems with the

X-Window system (commonly known as X11, based on its current major version

being 11).

But soon versions for other operating systems (MS WINDOWS, MAC OSX,

ATARI ST/TOS) have been built. In case where no X11 window graphics system

implementation is available, X11-Basic can be compiled with a framebuffer-device

graphics engine. The Android version e.g. uses the framebuffer interface. Also

such a version for the TomTom navigation devices and for the Raspberry Pi has

been created. The SDL (=Simple Direct-Media Library) is also supported as an

alternative graphics engine. The MS-Windows version makes use of this. But it is

also possible to compile SDL support for other operating systems.

Such, Porting X11-Basic to more basic and embedded systems with a very

low amount of RAM and processing speed is well possible. It is even possible

to compile a version of X11-Basic without graphics at all. This way a very light

script-engine, e.g. for building servers can be created.

Sound is not available on every system. Where available, X11-Basic imple-

ments a 16 channel sound synthesizer as well as the option to play sound samples

from standard sound file formats (line .wav and .ogg). On LINUX systems the ALSA

sound engine is used. The Android port of X11-Basic uses the Android sound and

speech engine.

The X11-Basic environment contains a library of GEM1 GUI2 functions. This

makes writing GUI programs in X11-Basic faster, easier and more portable than

programming with native GUI tools.

The Android version of X11-Basic contains a full featured coloured VT100/ANSI

terminal emulation and support for unicode character sets (UTF-8 coded) for stan-

dard output.

1GEM=Graphics Environment Manager, an operating environment created by Digital Research, Inc. (DRI), which

was used on the ATARI ST and GFA-BASIC.
2GUI=Graphical User Interface

2

CHAPTER 1. ABOUT X11-BASIC

Structured programming

X11-Basic is a structured procedural programming language. Structure is a form

of visual and functional encapsulation in which multiple-line sections of program

look and act like single units. The beginning and end of blocks are marked by

descriptive keyword delimiters.

In contrast to more traditional BASIC implementations, line numbers are not

used in X11-Basic. Every line holds only one instruction. Jumps with GOTO are

possible but not necessary. All the well-known loops are available including addi-

tional commands for discontinuation (−→ EXIT IF, BREAK).

Procedures and functions with return values of any type can be defined. This

way BASIC programs can be structured in a modular way. A program can contain

a main part to call subfunctions and subprocedures, which may or may not be

defined in the same source file. Distinct sources can form a library. Whole libraries

can be added with the merge command (−→ MERGE).

To help porting ANSI-Basic1 programs (with line numbers) to X11-Basic, a con-

verter (−→ bas2x11basic) has been written. It comes with the X11-Basic pack-

age.

The third-party tool gfalist2 by Peter Backes even allows to decode GFA-

Basic .gfa files to ASCII.

Optimality of code and code overhead

At a minimum the X11-Basic interpreter and the bytecode interpreter (virtual ma-

chine) require about 350 KB of memory and another 400 kB of file size, which

includes the X11-Basic runtime-library. So this is the overhead that all your pro-

grams will have. Compared to some Windows programs, this isn’t that bad. Most

likely your bytecode is less than 50 kB anyway (for a moderate/large application),

plus any resources and graphics you may want to include of course. In the end

the code produced will be reasonably small and light enough to be also used on

portable devices (e.g. cell phones, e-book readers, and navigation devices) which

have only a small amount of native memory (and a relatively slow processor).

1So-called ANSI-Basic has been standardized by the American National Standards Institute. ANSI-Basic uses

line numbers and the syntax can be quite different from X11-Basic.
2You will find a link to gfalist (the project name is ONS) on the X11-Basic homepage.

3

CHAPTER 1. ABOUT X11-BASIC

Copyright information

Copyright (C) 1997-2020 by Markus Hoffmann

Permission is granted to copy, distribute and/or modify this document under the

terms of the GNU Free Documentation License, Version 1.2 or any later version

published by the Free Software Foundation; with no Invariant Sections, no Front-

Cover Texts, and no Back-Cover Texts. A copy of the license is included in the

section entitled "GNU Free Documentation License".

X11-Basic is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software Foun-

dation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

Read the file COPYING for details.

(Basically that means, free, open source, use and modify as you like, don’t

incorporate it into non-free software, no warranty of any sort, don’t blame me if it

doesn’t work.)

4

X11-Basic
2 USAGE

This chapter describes how to install X11-Basic on the most popular operating

systems and how to run the interpreter and how to compile BASIC programs.

The X11-Basic interpreter is called xbasic (xbasic.exe under Windows). The

compiler xbc (xbc.exe under Windows). Under Unix these executables are usu-

ally installed in the /usr/bin/ (if installed via the package management system)

or in /usr/local/bin (if installed manually from the source package) path. Under

Windows, the files are installed normally under the directory C:\x11basic. Under

Android you will not have to care about the individual components of X11-Basic,

because there the X11-Basic app comes with a little IDE (Integrated Development

Environment) which handles the terminal, editor, loading running and the compile

process for you.

2.1 Installing X11-Basic

For the most popular operating systems, ready-made packages are available which

allow an easy installation of X11-Basic without the need of compiling it from source

code.

For other operating systems not mentioned here, X11-Basic may or may not

work. Generally no binary package might be available, so in these cases you will

have to compile all X11-Basic components (manually) by your own. You may be

lucky and you are not the first trying this, so searching the internet for hints is

generally a good idea.

But most likely you are reading this manual because you have already got X11-

Basic installed on your system, or you at least have a package ready to be installed

right away.

SuSE-Linux and RedHat

If you have got a Redhat-Package (RPM) e.g. a file named X11Basic-1.27-1.i386.rpm,

then you can install this package (being root) with

rpm -i X11Basic-1.27-1.i386.rpm .

This is a very convenient way at least for the Linux distributions Feodora, Man-

5

2.1. INSTALLING X11-BASIC CHAPTER 2. USAGE

driva, SuSE and RedHat (and maybe others, basically derived distributions1) to

install the interpreter, the compiler, and its documentation, the man-pages and a

small collection of example programs.
Following files will be normally installed:

/usr/bin/xbasic -- the X11-Basic interpreter

/usr/bin/xbc -- the compiler

/usr/bin/xbbc -- bytecode compiler

/usr/bin/xvbm -- bytecode interpreter (virtual machine)

/usr/bin/xb2c -- the bytecode to C translator

/usr/bin/bas2x11basic -- the ANSI BASIC to X11-Basic translator

/usr/lib/libx11basic.so -- the runtime library (shared object)

/usr/lib/libx11basic.a -- the runtime library for static linking

/usr/include/x11basic/x11basic.h -- the header file for library API

/usr/include/x11basic/xb2csol.h -- the header file for compilation of xb2c output

/usr/share/man/man1/x11basic.1 -- the man-page of X11-Basic

/usr/share/man/man1/xbasic.1 -- the man-page of the X11-Basic interpreter

/usr/share/man/man1/xbc.1 -- the man-page of the compiler

/usr/share/man/man1/xbbc.1 -- the man-page of the bytecode compiler

/usr/share/man/man1/xbvm.1 -- the man-page of the virtual machine

/usr/share/man/man1/xb2c.1 -- the man-page of the X11-Basic to C translator

/usr/share/man/man1/bas2x11basic.1 -- the man-page of the ANSI to X11-Basic translator

After having installed the package, you can execute the interpreter with xbasic
or read the man pages with man xbasic or man x11basic.

The documentation should install into the /usr/share/doc/packages/X11Basic/
directory and you should find the following files:

-rw-r--r-- 1005 ACKNOWLEGEMENTS -- acknowledgments

-rw-r--r-- 46 AUTHORS -- contact addresses of the author

-rw-r--r-- 17982 COPYING -- copyright information

-rw-r--r-- 2960 INSTALL -- installation instructions

-rw-r--r-- 1752 README -- short description

-rw-r--r-- 170 RELEASE_NOTES -- release notes

-rw-r--r-- 164370 X11-Basic-manual.txt -- the manual (txt version)

drwxr-xr-x 1024 editors/ -- files for editors / syntax highlighting

drwxr-xr-x 1024 examples/ -- few example programs

Debian based distributions, Ubuntu and Knoppix

If your Linux distributions does not use the RedHat package system it is very likely

that it instead uses the Debian package system. The most popular Debian based

Linux distributions are Knoppix and Ubuntu2.

1A list of RPM based Linux distributions can be found here: http://en.wikipedia.org/wiki/Category:

RPM-based_Linux_distributions
2A list of Debian based Linux distributions can be found here: http://en.wikipedia.org/wiki/Category:

Debian-based_distributions

6

CHAPTER 2. USAGE 2.1. INSTALLING X11-BASIC

X11-Basic also comes in packages called (e.g.) x11basic_1.27-1_i386.deb.

Usually you can very easily install the file from a file browser with simply double

clicking on it. Also a

dpkg -i x11basic_1.27-1_i386.deb

from a terminal will do. The file system structure should be similar to what is

described in the previous chapter (explaining the RedHat packages), so you should

expect to find the same files at the same places. Please note, that you need a

special Debian package if you want to install it on 64 bit Linux installations, usually

called x11basic_1.27-1_amd64.deb.

Other Linux and UNIX distributions

The author currently provides only 32bit and 64bit Debian binary packages for

Linux (specifically Ubuntu Linux). A rpm package can be made out of the Debian

packet with a tool called alien.

For exotic Linux based devices usually binary distributions come as a zip file

(like the TomTom version). In these cases they are accompanied by a README

or other instructions how to install them. The package for Android comes in a

file called X11-Basic-1.27-57.apk usually provided by Google Play (formerly

known as Android Market), which also installs it for you. If you do not like to use

Google Play for some reason, you can also install X11-Basic from any file browser

taping on its .apk file, downloaded from sourceforge.net.

For all other systems you will have to get the source-package X11Basic-1.27.tar.gz
and compile the sources. This should work for all Linux distributions, and probably

with little modifications also for HP-UX (Hewlett-Packard UniX), for DEC/alpha, for

MAC/OSX, for SUN/SOLARIS and FreeBSD and maybe others. Also X11-Basic

compiles on Cygwin, and on ARM-Linuxes like the one often used together with

the Raspberry Pi. Please note that X11-Basic is designed for 32-bit operating sys-

tems. X11-Basic will also compile on 64 bit systems. But some of the functions

may not work, especially pointer arithmetic (VARPTR(), PEEK(), POKE, etc.) will

probably lead to segmentation faults when using huge amounts of memory.1 It has

1In X11-Basic all pointers to memory addresses are stored in 32bit integer variables. The upper 32bits of the

addresses are stored internally for further use. So if you calculate VARPTR(a), you would be able to POKE to the

address immediately after without error, because the upper part of the addresses was stored internally from the

previous call to VARPTR. X11-Basic will emit a warning, pointer base has changed, whenever this part is different

from what it was before. This way, pointer arithmetics can be used with care, even on 64 bit operating systems.

7

2.1. INSTALLING X11-BASIC CHAPTER 2. USAGE

turned out, that also the GEM AES graphics functions make use of pointer conver-

sions (to stay compatible with the ancient ATARI ST format), also here a problem

might occur. Also the statically linked versions of X11-Basic are more likely to work

correctly, because the shared libraries are loaded to the upper address space.

So If you see the WARNING messages, try to use a static version of X11-basic

(xbasic.static).

Compiling X11-Basic from its sources under UNIX like sys-

tems

If you have a binary package of X11-Basic, you can safely skip this section.

In order to compile X11-Basic, you will need the following:

• A C compiler, preferably GNU C (but other ANSI C compilers will do),

• X11 libraries (for the graphics) or a framebuffer device or the SDL library,

• optionally the readline library,

• optionally the LAPACK library,

• optionally the GMP library,

• optionally the ALSA sound library (libasound) and/or the SDL framework.

These will suffice to get you started. If one or more of these libraries are not

present on your system, the configure and make scripts will try to compile a

version, which does not need them (hence leaving out some of the functionality of

X11-Basic.).

1. Install the development environment packages, e.g. done by the command:

sudo apt-get install libx11-dev libreadline6-dev liblapack-dev \
libgmp-dev libfftw-dev

2. Unpack X11Basic-1.27.tar.gz with

tar xzf X11Basic-1.27.tar.gz

3. go into the X11Basic-1.27 directory and do a

./configure
make
sudo make install

8

CHAPTER 2. USAGE 2.1. INSTALLING X11-BASIC

That’s all you will have to do (for more detailed installation instructions read the file

INSTALL, which comes with the package.).

If the ‘configure’ script fails, please contact me (kollo@users.sourceforge.
net) and send me the output it generated (config.log). I am going to try to help

you to fix the problem.

Special comments on the framebuffer version

Very useful on the Raspberry pi and other low memory/low resources computers

is the option not to use X or SDL libraries at all. You can have a full featured X11-

basic with graphics and mouse input anyway, if you compile the framebuffer version

(make fb). This will produce the single file xbasic.framebuffer which is the

interpreter (and virtual machine) ready to be used from a console (and without X).

This way you have full control over the screen and mouse and keyboard. Usually

everything you need to make the Raspberry pi interact with and display to the user.

Cross-compiling other Versions of X11Basic

The Makefile allows you to also produce the compiler (make xbc), the bytecode

compiler (make xbbc), the virtual machine (make xbvm), and the X11-Basic to C

translator (make xb2c). If you need the separate libraries you can do a make x11basic.a
and a make libx11basic.so. These libraries are for example needed by the

compiler xbc.

If you want to make a version which uses the framebuffer (instead of the X-

Server) do a make fb. If you want a version using the SDL library, do a make sdl.

The TomTom distribution can be generated with make TomTom. (The ARM-

Linux cross-compiler is needed).

The MS WINDOWS distribution can be generated with make windows. (The

mingw cross-compiler is needed).

Support

If you have trouble with X11-Basic, you may send me a mail. Please understand

that I need to find time to answer your mails. On http://sourceforge.net/
projects/x11-basic/ there is a forum (bug reports, patches, request for help,

feature requests) about X11-Basic. You can as well place your questions there, so

that also other users of X11-Basic have a chance to help. It is also worth browsing

9

2.2. USING THE X11-BASIC INTERPRETER CHAPTER 2. USAGE

through the topics. Maybe someone has already found a solution to your problem.

It is as well ment for the users to share their experience with other X11-Basic users.

If you have trouble with some X11-Basic command or program, and you think it

is a bug in the X11-Basic interpreter or compiler itself, you should create a minimum

sample program to reproduce the error; please keep this sample program as small

as possible. Then take the program and send it to me. Add a short description of

you problem, containing:

• Which operating system are you using: Windows or UNIX, Linux, Android?

• How does the program behave on your computer? What did you expect?

• Which version of X11-Basic are you using? Please try the latest one!

2.2 Using the X11-Basic Interpreter

There are several ways to start the X11-Basic interpreter depending on the oper-

ating system you are using it.

2.2.1 Using the X11-Basic Interpreter under UNIX, Linux

The simplest way is to just start it by the command xbasic from a terminal window

or a console. Then you can use the interpreter in interactive mode. Just try to enter

some X11-Basic commands. The interpreter itself also accepts several options via

the command line. Please also read the man-page (man xbasic) for more details.

In Ubuntu or Lubuntu you will also find X11-Basic in the start menu. When you

select X11-Basic from the start menu, the interpreter should come up in its own

terminal window.

X11-Basic as a shell

X11-Basic programs can be executed like shell scripts. Make sure that the very

first line of your X11-Basic program starts with the characters ’#!’ followed by the

full pathname of the X11-Basic interpreter xbasic (e.g. ’#!/usr/bin/xbasic’).

This she-bang line ensures, that your UNIX will invoke xbasic to execute your

program. Moreover, you will need to change the permissions of your X11-Basic

program, e.g. chmod 755 myprog.bas. After that your program can simply be

executed from your shell and the interpreter works in the background like shells

do. You need not even use the extension .bas for your scripts.

10

CHAPTER 2. USAGE 2.2. USING THE X11-BASIC INTERPRETER

Example: draftit

A tool to stamp a postscript file with "draft" on every page.

#!/usr/bin/xbasic

i=1

WHILE LEN(PARAM$(i))

inputfile$=PARAM$(i)

INC i

WEND

CLR flag,count

IF NOT EXIST(inputfile$)

QUIT

ENDIF

OPEN "I",#1,inputfile$

WHILE NOT EOF(#1)

LINEINPUT #1,t$

IF count=3

PRINT "%% Created by draftit X11-Basic (c) Markus Hoffmann from "+inputfile$

ENDIF

IF GLOB(t$,"%%Page: *") AND NOT GLOB(t$,"%%Page: 1 1*")

IF flag

PRINT "grestore"

ENDIF

flag=1

PRINT t$

PRINT "gsave"

PRINT ".80 setgray"

PRINT "/Helvetica-Bold findfont 140 scalefont setfont"

PRINT "0 80 800 { 306 exch moveto"

PRINT "(Draft) dup"

PRINT "stringwidth pop 4 div neg 0 rmoveto 6 rotate show } for"

PRINT "grestore"

ELSE

PRINT t$

ENDIF

INC count

WEND

CLOSE

QUIT

2.2.2 Using the WINDOWS Version of X11-Basic

The installation is done in the usual way with a setup program, e.g. X11-Basic-1.27-57-setup.exe
which you can download from the homepage. All files will be installed on the pro-

11

2.2. USING THE X11-BASIC INTERPRETER CHAPTER 2. USAGE

gram folder on ‘C:‘.

In the case you have got a .zip file, e.g. X11-Basic-1.27-1-win.zip, you

should extract all files and invoking the setup program (setup.exe). This installs

X11-Basic into a folder C:\\x11basic. All files you need for using X11-Basic are

located there:

lib -- empty folder for future use
bas.ico -- the icon for .bas files
demo.bas -- one of the example programs
readme.txt -- short description of X11-Basic
SDL.dll -- the Simple Direct Media Library
setup.exe -- Installation and uninstall program
x11basic.ico -- another X11-Basic icon
X11-Basic.pdf -- The X11-Basic User Manual
xb2c.exe -- bytecode to C translator
xbasic.exe -- The X11-Basic interpreter
xbc.exe -- The X11-Basic compiler
xbvm.exe -- The virtual machine

X11-Basic can be invoked in the following three ways:

1. Choose "X11-Basic" from the start-menu: You can choose between

COMPILER : opens the compiler Application which then asks for a .bas file

to compile into .exe,

DEMO : Opens and runs the demo.bas example program,

DOCU : Opens the X11-Basic User Manual,

X11-Basic : Opens the X11-Basic interpreter. xbasic.exe will come up with

a console window and the interpreter waits for commands to be typed in

right away.

2. Click with the right mouse button on your desktop. Choose "new" from the

context menu that appears; this will create a new icon on your desktop. The

context menu of this icon has three entries "Execute", "Edit" and "View docu"

(which shows the embedded documentation, if any); a double-click executes

the program.

3. Create a file containing your X11-Basic program. This file should have the

extension ".bas". Double-click on this file then invokes X11-Basic, to execute

your program.

12

CHAPTER 2. USAGE 2.2. USING THE X11-BASIC INTERPRETER

The compiler has a rudimentary graphical user interface, which will ask for the

.bas file to be compiled and later for the name of the executable to be written to.

By default, the WINDOWS or DOS console does not support ANSI/VT100 cod-

ing. So PRINT AT() and line editing will probably not work. To fix this, ANSI.SYS

has to be installed and switched on for the console windows. Instructions how

to install ANSI.SYS can be found on the Internet. (Also an alternative extension

named ANSICON can be used.)

The Context Menu

Every icon under WINDOWS offers a context menu when you click on it with the

right mouse button. Clicking on an icon of a X11-Basic program as well opens this

context menu with following options:

Execute will invoke the X11-Basic interpreter to execute your program. The same

happens, if you double-click on the icon.

Edit invokes notepad, allowing you to edit your program.

View docu opens a window which shows the embedded documentation of your

program if there is any. Embedded documentation within a .bas file are com-

ments, which start with a double comment character (##).

2.2.3 The Android Version of X11-Basic

A version of X11-Basic ready to be installed on Android smart-phones and tablets

is available on the Android Market (nowadays also called Google Play). A more

recent version usually can be found in the files section of the project pages of X11-

Basic on sourceforge. Watch out for a file named X11-Basic-1.27-57.apk which

contains the app. Download this file to your Android tablet or smart-phone and

install it, allowing installation of apps from other sources in the systems settings

before if necessary.

Unlike the other versions of X11-Basic, the interpreter and virtual machine is

embedded in a little IDE (=Integrated Development Environment) which allows the

user to load, run, edit and compile the programs.

The app registers itself as a viewer to .bas and .b files on the system. So from

any file browser, basic programs can be started with a single touch.

If you open the X11-Basic app itself, you can directly type in commands with

the virtual keyboard. Pressing the MENU button gives you the option to load and

run BASIC programs, stop and continue execution, open the keyboard (if its has

13

2.2. USING THE X11-BASIC INTERPRETER CHAPTER 2. USAGE

vanished from the screen) and compile basic programs into bytecode. The vir-

tual machine is integrated, so bytecode compiled code can be run. Depending

on the endianess of the processor architecture of the platform, bytecode may or

may not be compatible with those produced on a Linux PC or WINDOWS machine.

Standard output is rendered directly into the graphics screen with a VT100 com-

patible terminal emulation. Not all graphics features have the same result than on a

X11-Windows installation, the whole screen counts as a single full-screen window.

Finally shortcuts to X11-Basic programs can be placed on the desktop, so they

can be started with one click. Also X11-Basic is registered as a method to open

files (from a file browser). A small selection of example programs is included in the

Android package. If you like to have some fun with a game, try ballerburg.bas.

Usage on Android devices

Android devices usually have a BACK button, a HOME button and a MENU button.

• The HOME button suspends X11-Basic and returns to the Android desktop.

Selecting the X11-Basic app again will resume it. If a BASIC program was

running, it will continue to run in the background.

• With the BACK button, a running BASIC program will be stopped. If you press

the BACK button again, the X11-Basic interpreter quits.

• The MENU button opens a menu with following options: About, LOAD pro-

gram, RUN program, STOP/CONT program, NEW, Keyboard, Paste from clip-

board, Info/Settings, Editor, Compile and Quit.

About shows information about the current version of X11-Basic, news and

impressum.

Load ... opens a file-selector which displays all .bas and all .b programs in

the directory /mnt/sdcard/bas. The selected program will be loaded

into memory. A program eventually stored there before will be overwrit-

ten. You can display the source-code by entering LIST.

Run will simply start the execution of a program which has been loaded be-

fore. (You can also enter RUN)

STOP/CONT will interrupt the execution of the program or resume it. (you

can also press the BACK button once to stop the program, and you can

enter CONT to continue it).

New will delete the currently loaded program from memory.

Keyboard will show or hide the on-screen virtual keyboard. If you have a

14

CHAPTER 2. USAGE 2.2. USING THE X11-BASIC INTERPRETER

hardware or external USB/Bluetooth keyboard, you can also enter com-

mands with that.

Paste from Clipboard will paste any text you have copied to the clipboard

(from any other application) before.

Info/Settings will open a dialog with additional information, links, and prefer-

ence settings. The preferences can be set as follows:

Show splash screen at X11-Basic start-up. This can be switched off

here.

Select screen focus. When the screen will be partially covered by the

on-screen virtual keyboard, you can specify which portion of the

screen should be visible: The top portion, bottom portion, the whole

screen but scaled to fit, the portion with the text cursor in it, or the

portion with the mouse pointer in it. The default is: scaled.

Select font size. If the screen is small, but the resolution is high, you

may want to change the font size to LARGE. This setting affects the

console font (text mode) as well as the graphics/user-interface ap-

pearance.

Show title This can be switched off here.

Show status bar This can be switched off here.

Show keyboard at start This can be switched off here.

Editor will execute a 3rd-party text editor (e.g. Ted or Jota or 920 Text Editor if

installed) to edit the program currently loaded. If no program was loaded,

the default file name will be new.bas. After having saved and closed the

text editor, the modified program will be automatically reloaded into the

X11-Basic interpreter.

Compile will compile the basic source code into bytecode which can be ex-

ecuted about 20 times faster (but cannot be edited or merged anymore).

The bytecode will be saved with .b extension in the bas/ folder.

Help will open a window in which you can search the command reference.

Quit will terminate the X11-Basic interpreter.

Editing a program

If you want to edit an existing program, do following steps (in this example, the

editor used is TED, but it works similar with Jota or many other text editors.):

1. Load an existing program with Menu –> Load,

15

2.2. USING THE X11-BASIC INTERPRETER CHAPTER 2. USAGE

2. choose Menu → Editor to edit the program,

3. finish editing (and save it in the editor). Leave the editor by choosing EXIT in

the menu or by using the BACK button (do not use the HOME button).

4. The program gets automatically reloaded,

5. choose menu → run to run it.

If you want to create a new program, follow these steps (in this example, the

editor used is TED):

1. Do a MENU -> New

2. Do a MENU -> Editor. The editor will be executed with the default file name

(new.bas). If you have more than one editors installed, you will be asked

which one to use. Select TED Text Editor.

3. Inside the editor do a "Save As" and give it a different name, e.g. "my-

thing.bas", make sure that it is saved into the folder "bas".

4. Press the back button (not the HOME button), so the editor returns to X11-

Basic.

5. X11-Basic now reloads new.bas, but this is not what you want, so

6. within X11-Basic load "mything.bas"

The next time you edit it, it has the correct name, and a regular save in the editor

should do as well as automatic reload in X11-Basic.

If you get an error when calling the text editor, you need to install one. There

are plenty around, e.g. 920 Text Editor or Ted (tiny text editor). Install them from

the Android market. You can install multiple editors. Then you are asked which

one you like to use every time you call the editor.

LOAD file select functions

To load a program, press menu –> load. You can now select a program file (either

.bas or .b) to load. If you touch the filename long you get another menu with

advanced functions:

LOAD – load the program.

MERGE – merge the program to the one already loaded (works only with .bas

files).

LOAD + RUN – load the program and immediately run it.

LOAD + LIST – load the program an list it.

16

CHAPTER 2. USAGE 2.2. USING THE X11-BASIC INTERPRETER

LOAD + edit – load the program and immediately start the editor.

LOAD + compile – load the program and compile it.

compile + RUN – compile the program and immediately run the compiled pro-

gram.

delete – delete the selected file (you will be asked to confirm).

CANCEL – return to the file menu.

These functions are here for convenience only. You probably want to use

LOAD+RUN or compile+RUN more often.

Running in the Background

When a program is running and you press the home button, the program will con-

tinue to run in the background. If you select X11-Basic app again, it brings up the

screen output.

Also: When you rotate the screen the running program should continue to run.

It needs to find out by using GET_GEOMETRY if the screen size has changed.

Desktop shortcuts

You can create desktop shortcuts to your BASIC programs. You can place an

application shortcut on the home screen by simply pressing anywhere (and hold

for 1 second) on the background of the desktop screen (on Android 4.x devices go

to Apps → Widgets). You first are asked to place the shortcut somewhere on the

desktop. The X11-Basic launcher then asks for a .bas or .b file and places the link

on the desktop. Pressing this link will automatically load X11-Basic and the .bas

program and run it.

You can select any file from the /sdcard/bas folder which then is placed in the

desktop.

Updates of example programs

The X11-Basic app comes with a small selection of example programs. They are

copied into the /mnt/sdcard/bas/ directory. The X11-Basic app will never over-

write a file in bas/ which is already there. If you want a specific example program

be updated (replaced with a potentially newer version, which has come with an

update of the X11-Basic app), simply delete the file. It will be restored after the

next execution of X11-Basic.

17

2.2. USING THE X11-BASIC INTERPRETER CHAPTER 2. USAGE

Troubleshooting the Android Version

SCREEN REFRESH PROBLEM: (Was reported sometimes on Samsung Tabs,

all Android versions) e.g. galaxy note 1, Android 4.1.2: Symptoms: Run-

ning the X11-Basic app, the screen output is not updating or refreshing while

X11-Basic runs a program. CURE: you should check the system settings:

Developer settings --> deactivate Hardware overlays: ON
--> force Gpu: OFF

Characters typed are not visible If the whole line appears after you pressed EN-

TER, but you like to see what you are typing, you need to modify the settings

of the keyboard (switch off auto-completion and anything like that, which may

make the keyboard hold text back until you press enter.) If still nothing ap-

pears after ENTER, then you probably have the Screen Refresh Problem (see

above).

2.2.4 Command line parameters

If you are using X11-Basic under Android, you can skip this section. Command-line

parameters cannot be used on Android.

The X11-Basic interpreter xbasic can be evoked with additional but optional

command line parameters. It takes the following ones:

xbasic <filename> run Basic program [input.bas]
-l load only, don’t execute

-e <command> execute basic command

--eval <expression> evaluate numerical expression

--daemon switch off prompting and echoing

-h --help print a short help

--help <topic> print help on a specific topic

--quitonend changes the behavior of the interpreter such that it quits

after the program has finished. The direct mode / inter-

active mode will not be entered.

18

CHAPTER 2. USAGE 2.3. EDITING X11-BASIC PROGRAMS

Examples:

xbasic testme.bas
xbasic -l dontrunme.bas
xbasic -e ’ALERT 1,"Hello !",1," OK ",b’
xbasic --eval 1+3-4*3

X11-Basic as daemon

The command line option --daemon forces the interpreter to run in daemon-mode

(with no terminal connected). No prompt is given and the input is not echoed back.

This is useful, if you want to run X11-Basic programs as a background service.

Additional command line parameters for the framebuffer ver-

sion

If X11-Basic was compiled to use the framebuffer device for graphics output there

are three more options to control which framebuffer device is to be used, which

mouse device and which keyboard-device:

--keyboard <device> set the keyboard device (default: /dev/input/event4)

--mouse <device> set the mouse device (default: /dev/input/mice)

--framebuffer <device> set the framebuffer device (default: /dev/fb0)

For example: The sense hat for the Raspberry Pi uses the framebuffer device

/dev/fb1 for its LED matrix. So if you want to draw to the LED matrix display

specify this for graphics output.

xbasic --framebuffer /dev/fb1 led-blink.bas

2.3 Editing X11-Basic programs

X11-Basic programs (source code, .bas files) are regular ASCII files and therefore

can be created with any text editor available.

Users of UNIX like operating systems are fine with every text editor. Simple

ones like pico or nano will do. MS-WINDOWS user can use the simple notepad

text editor.

19

2.3. EDITING X11-BASIC PROGRAMS CHAPTER 2. USAGE

Users of X11-Basic under Android need to install a good text editor. TED (Text

Editor), 920 Text Editor, or Jota will work fine. Other text editors which might

have been already preinstalled can be a source of frustration and trouble. So if

unsure, please install one of the mentioned editors. If you have installed more than

one editor, this is no problem, you will be asked which one to use every time the

editor is invoked.

Besides from the basic editing features I recommend to use a text editor with

syntax highlighting. Currently X11-Basic syntax definitions are available for nano
(available for the text consoles) and for the Nirvana Editor (nedit, available for

Linux, UNIX and WINDOWS) as well as for the 920 Text Editor and Jota, avail-

able for Android.

X11-Basic can support foreign language characters. Therefor the basic pro-

gram may be coded in UTF-8 which is compatible to ASCII but has the ability to

use and encode any Unicode character. Such characters can be used in X11-

Basic string constants, but may not be used in variable names. Currently only the

standard output (console) supports the full UTF-8 character sets.1

Using syntax highlighting with nedit

NEdit, the full featured, plain text Nirvana editor2 is a GUI style text editor for work-

stations with the X Window System. Also a MS Windows port is available3. NEdit

provides all of the standard menu, dialog, editing, mouse support, macro exten-

sion language, syntax highlighting, and a lot other nice features (and extensions

for programmers). In short, it has everything you want to develop your X11-Basic

programs. Unfortunately nedit does not support UTF-8.

If you like to use nedit as your favorite editor, a nedit.defs file comes with

this package. This enables syntax highlighting for X11-Basic programs in nedit

(see fig. 2.1).

Using syntax highlighting with nano and pico

GNU nano is a text editor for Unix-like computing systems or operating environ-

ments using a command line interface. It emulates the pico text editor, part of the

1LTEXT will accept some of the special characters (currently only german), TEXT will work with UTF-8 only on

Android devices (all latin, greek, cyrillic).
2http://nedit.org/
3http://nedit.gmxhome.de/winport.html

20

CHAPTER 2. USAGE 2.4. THE BYTE-CODE COMPILER AND THE VIRTUAL MACHINE

Figure 2.1: The Nirvana Editor with syntax highlight-

ing for a X11-Basic program.

pine email client, and also provides additional functionality. Al though nano has

to be used on the console, it can also use pointer devices, such as a mouse, to

activate functions that are on the shortcut bar, as well as position the cursor. And

most important, it can handle UTF-8.

If you like to use nano as your favorite editor, a x11basic.nanorc file comes

with the X11-Basic package. This enables syntax highlighting for X11-Basic pro-

grams in nano (see fig. 2.2).

2.4 The Byte-code Compiler and the Virtual Machine

If you are using the Android version of X11-Basic, you can skip this chapter. All

you need to know is that there is the option to compile X11-Basic programs (to

byte-code) which makes them run much faster.

Under UNIX, Linux and Windows a separate program need to be used to com-

pile .bas files and make byte-code files or standalone .exe files out of it.

If you are using WINDOWS, the most convenient way to compile X11-Basic

programs is to execute the compiler xbc.exe which has a little use interface. Also

under UNIX/Linux it is very convenient to use the compiler manager xbc with ap-

propriate command line options (watch out for the -virtualm option).

Advanced users probably want to deal with the byte-code files produced in the

compiling process. For each compilation step there are separate programs which

do it; namely: xbbc, xb2c and xbvm.

21

2.4. THE BYTE-CODE COMPILER AND THE VIRTUAL MACHINE CHAPTER 2. USAGE

Figure 2.2: The nano editor with syntax highlighting

for a X11-Basic program.

xbbc compiles X11-Basic programs (.bas files) to byte-code files (.b). xb2c can

translate byte-code files to C source code. xbvm is a virtual machine (interpreter

for byte-code).

The idea is to increase the execution speed of X11-Basic programs a lot by com-

piling it to a byte-code, this still being portable. The byte-code itself is interpreted

by a byte-code interpreter (also called a virtual machine). This virtual machine

needs to be present on the target computer, and then all byte-code programs can

be used there. This way, the X11-Basic compiler need not deal with different target

machine architectures, and also the byte-code can be run much faster than the

interpreted BASIC source code.

The conversion to byte-code is a real compilation. The step to assembler or

machine code is not far. Also a translation to C or to JAVA or any other language

will be straight forward. As with JAVA, the byte-code is platform independent and

can be run on any system, which has a virtual machine ported to.

Also one point to mention (whether this is a feature or a disadvantage): X11-

Basic byte-code can not be converted back into BASIC source code (.bas), but is

rather a very abstract representation of your program.

If you want to get a feeling on what this is about, open a .c source file, which

has been produced by the byte-code to C translator xb2c. Implemented with an

22

CHAPTER 2. USAGE 2.4. THE BYTE-CODE COMPILER AND THE VIRTUAL MACHINE

additional macro translation step, the byte-code is in a way readable. Here is an

example:

...

PUSH2; /* 2 */

ZUWEIS(2); /* I= */

LBL_38: PUSHV(2); /* I */

X2I;

PUSHARRAYELEM(3,1); /* F(.) */

X2I;

JUMPIFZERO LBL_91; /* JEQ(0x91); */

PUSH2; /* 2 */

PUSHV(2); /* I */

EXCH;

X2F;

MULf;

PUSHV(0); /* S */

LESS;

JUMPIFZERO LBL_81; /* JEQ(0x81); */

PUSH2;

PUSHV(2); /* I */

EXCH;

X2F;

MULf;

ZUWEIS(5); /* K */

LBL_61: PUSHV(5); /* K */

X2I;

PUSHVVI(3,1); /* F */

PUSHCOMM(30,1); /* CLR */

PUSHV(5); /* K */

PUSHV(2); /* I */

ADD;

DUP;

ZUWEIS(5); /* K */

PUSHV(0); /* S */

GREATER;

JUMPIFZERO LBL_61; /* BEQ_s(-29); */

PUSHCOMM(74,0); /* FLUSH */

LBL_81: PUSHX("I");

PUSHLEER;

PUSHCOMM(147,2); /* PRINT */

PUSHVV(4); /* C */

COMM_INC; /* INC */

LBL_91: PUSHV(2); /* I */

PUSH1;

ADD;

DUP;

ZUWEIS(2); /* I= */

23

2.5. USING THE X11-BASIC TO C TRANSLATOR CHAPTER 2. USAGE

PUSHV(0); /* S */

GREATER;

JUMPIFZERO LBL_38; /* BEQ_s(-104); */

...

This is bytecode made out of the (X11-Basic) lines:

...

FOR i=2 TO s

IF f(i)

IF 2*i<s

FOR k=2*i TO s STEP i

CLR f(k)

NEXT k

FLUSH

ENDIF

PRINT i,

INC c

ENDIF

NEXT i

...

You are not supposed to understand any of these, but it may give you a feeling

about what byte-code really is, and that is really hard to reconstruct the original

BASIC lines out of it.

Please try the byte-code compiler out and maybe you want to report errors etc.

Quite a lot of the example programs are known to work well with the byte-code

compiler: e.g. mandel-simple.bas. The byte-code will execute about 10 times

faster than the interpreted program. Here is how to use it:

xbbc myprogram.bas -o b.b
xbvm b.b

2.5 Using the X11-Basic to C translator

It is possible to translate the byte-code generated by xbbc to C source code and

finally compile this intermediate C-source to a native executable (e.g. with the

GNU C compiler gcc). This way the program will be a real native executable which

–again– runs even a bit faster that the byte-code interpreted by the virtual machine.

Such programs can be linked against the dynamic library (.so or .dll) or the

static library (.a or .lib). In the end they run independently of any interpreter or

virtual machine. However, some restrictions to the code apply. Which means: not

every program, which can be interpreted, can also be compiled.

24

CHAPTER 2. USAGE 2.6. THE X11-BASIC COMPILER MANAGER XBC

The generated C-sources depend on the header file xb2csol.h (normally in-

stalled under /usr/include/x11basic/) the x11basic.a or libx11basic.so
libraries, which therefore should be present.

xb2c processes one input file. The suffix of the input file is usually .b (which

should be a bytecode file produced by xbbc). The default output file name is 11.c
but you can specify alternate names with the -o option.

Actually xb2c is not a real compiler, but rather a translator. The compilation is

already done by the byte-code compiler. xb2c itself does a one to one translation

of the byte-code (currently only into C). This translation process is not yet highly

optimized, but quite robust and portable. There is no way to recreate the .bas

source code from the .c file. But still the C file is platform independent and can be

compiled on all platforms, where a C compiler is available (and the x11basic library

is ported to).

Here is how to use it (examples are under Linux):

xbbc myprogram.bas -o b.b
xbvm b.b
xb2c b.b -o 11.c
gcc 11.c -lm -lX11 -lx11basic -lasound -lreadline -lgmp \

-llapack -o a.out

For convenience, a

xbc -virtualm myprogram.bas -o a.out

will exactly do the same.

2.6 The X11-Basic compiler manager xbc

The X11-Basic package is shipped with the X11-Basic compiler xbc, which makes

stand-alone binaries out of X11-Basic source code. It also can produce .o object

files, shared objects (or DLLs) and byte-code.

There are three methods on how the compilation can be done:

1. The pseudo method: The source-code is bundled together with the X11-Basic

interpreter into one executable file, which can be run. Execution speed is not

faster than the interpreted source code, but all programs will run and behave

exactly the same as if they were run in the interpreter. Currently this method

25

2.6. THE X11-BASIC COMPILER MANAGER XBC CHAPTER 2. USAGE

is not available for WINDOWS since gcc is used to do the compression and

linking with the X11-Basic runtime library. This is the default on UNIX and

Linux operating systems.

2. The byte-code method: The source-code is compiled into byte-code and this

byte-code is bundled together with the X11-Basic virtual machine into one

executable file, which can be run. Execution speed is much faster than the

interpreted source code. However, some restrictions to the compiled source-

code apply, e.g. GOTOs across procedures are not possible, as well as ON

ERROR and ON BREAK will currently not work. So some obscure code will

probably not compile correctly. However, this method is recommended as the

preferred method and it is the default on MS WINDOWS.

3. The independent method: The source-code is compiled to byte-code and then

translated to C source-code, which finally will be compiled using a C-Compiler

(e.g. GNU gcc) or a cross-compiler. This is the preferred method on UNIX

systems (although it is not the default) where a development environment

(gcc and development packages for libraries) is available. On WINDOWS

this is usually not the case, so method 3 can not be used. On Ubuntu Linux

you will need to install at least following packages: gcc, libreadline-dev,

libasound-dev, libgmp-dev, liblapack-dev and maybe others. If done

so, the compiler with method 3 will work fine.

To select method 3 on UNIX/Linux systems, use the command line option -virtualm.

The windows version of the compiler will automatically use method 2 only.

The compiler xbc itself is written in X11-Basic and relies on the presence of

xbbc and xv2c (for methods 2 and 3). You can find the compiler in examples/compiler/xbc.bas.

Yes, the compiler compiles itself. Just make sure you have built the shared library

libx11basic.so and the library for static linking before

make lib x11basic.a

and moved it to /usr/lib. Then do

xbasic xbc.bas

See the man page xbc(1) for further information on the compiler.

26

CHAPTER 2. USAGE 2.7. THE ANSI-BASIC TO X11-BASIC CONVERTER

2.7 The ANSI-Basic to X11-Basic converter

X11-Basic packages come with a simple ANSI-Basic to X11-Basic converter bas2x11basic1.

It helps converting old (real) Basic Programs with line numbers and multiple com-

mands per line to the X11-Basic structure. Because there are so many different

BASIC versions around, in most cases you will have to edit these files produced

manually. But most of the work will already have been done by this converter. For

details on the compatibility to other dialects of BASIC, please read chapter 8.

Example:

xbasic bas2x11basic.bas ansibasic.bas -o newname.bas

For further options try

xbasic bas2x11basic.bas --help

and read the man-page man bas2x11basic. If you like to improve the converter

please feel free to do so. You may want to send me the result.

2.8 Using GFA-BASIC programs

GFA-Basic programs have a tokenized binary format and usually the suffix .gfa.

This binary format has to be decoded to ASCII files before they can be used with

X11-Basic. This job is done by the utility gfalist (sometimes also called gfa2lst
or ons-gfalist) by Peter Backes2.

The resulting GFA-Basic programs usually need some manual corrections. Very

simple ones may well work fine with X11-Basic without. For details on the compat-

ibility, please read chapter 8.2.

1The source-code bas2x11basic.bas of the converter can be found in the examples/compiler/ directory.
2http://titan.plasma.xg8.de:8080/~rtc/

27

X11-Basic
3 PROGRAMMING IN X11-BASIC

This chapter describes all you need to know to write your own programs in X11-

Basic.

3.1 The dialect of X11-BASIC

The programming language BASIC has been around since the 1960s. BASIC is

an acronym and it stands for Beginners All Purpose Symbolic Instruction Code.

BASIC was originally designed to be a programming language that is easy to use

for a wide range of projects by anyone. X11-Basic is a dialect of this but it is not

a BASIC in its original form. It is more a mix of classic BASIC with structured

languages like PASCAL and Modula-2. The Syntax of X11-Basic is oriented to the

famous GFA-BASIC which was developed for the ATARI ST in 1985. GFA BASIC

(as of version 3.5, the most popular one) was, by the standards of its time, a very

modern programming language. Like X11-Basic, it does without line numbers and

has a reasonable range of structured programming commands.

X11-Basic has a lot of features which make the language different from the origi-

nal (ANSI-Basic) intention. As with GFA-Basic these modifications help developing

programs with having a more structured look and which make use of the more

modern graphical user interfaces available on computers since the mid 1980’s:

• One command or declaration per line for better readability,

• use of subroutines (procedures) and functions with local variables and pa-

rameter passing by value or by reference,

• data statements and arrays,

• powerful loop and program flow constructs,

• file and socket operations,

• complex number mathematics,

• operations for handling arbitrary/infinite precision numbers,

• commands to directly access the operation system shell,

• commands for using graphics in multiple windows,

• a port of the AES (the graphical user interface from the ATARI ST), allowing

for easy use of graphics in your program,

• commands for direct memory manipulation, allowing you to access the com-

puter almost as with machine language,

28

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.2. GETTING STARTED

• possibility to merge source code for libraries and reuse,

• inline data compression and encryption (disabled in US-versions),

• Unicode (UTF-8) support,

• support to access USB and bluetooth devices,

• powerful mathematics (including complex numbers, matrix/equation solving,

big integers, and fast Fourier transformations), and

• a compiler is available.

Interpreter and Compiler

X11-Basic programs (or scripts) are interpreted by default. This means the so-

called interpreter takes each line of your code and looks what to do with it. The

compiler does it differently, it will take your code once, translate it into bytecode

or machine code resulting in a more speedy program execution as the step for

command look-up does not appear anymore. The compiled program just can be

executed out of the box. On the other hand, the advantage of an interpreter is that

you can directly test and run your program without running a compiler first. This is

helpful while developing but of course a compiler is available as well allowing you

to produce rather fast machine code from your X11-Basic program, once testing

has been finished.

3.2 Getting started

To write a first X11-Basic program you will need an editor, where you can type in

the source code. The X11-Basic package does not include an editor, but many

so-called text editors are readily available nearly everywhere and by chance they

are already installed on your system. You can use Notapad2 on MS WINDOWS

systems, pico, nano, vi, emacs, nedit, gedit and many more on UNIX and Linux

systems, pico on the TomTom device, Ted or 920 text editor on Android. This is

just a small list of possibilities here.

Open such an editor, and you can start programming.

3.3 Your first X11-Basic program

We assume, that you have opened a console window (a shell) on linux or WIN-

DOWS. The Android version is a bit different.

29

3.3. YOUR FIRST X11-BASIC PROGRAM CHAPTER 3. PROGRAMMING IN X11-BASIC

Open your favorite editor and type the following line of code into the editor.

PRINT "Hello X11-Basic!"

Now save the file as "hello.bas" and run the interpreter with

xbasic hello.bas

X11-Basic should not complain. If it does, check carefully for typing mistakes.

The Program now should print out your hello message at the console or in the

console window the interpreter was started from. It will not return to the shell, but

just prompt for additional commands. Now type

> quit

and you return to the shell.

Of course you can include the quit command in your hello.bas:

PRINT "Hello X11-Basic!"
QUIT

Now the program always returns to the shell prompt when done.

Now lets compile it:

xbbc hello.bas -o hello.b

will produce a bytecode binary hello.b.

You can run this:

xbvm hello.b

will give you the same output "Hello X11-Basic!".

Real compilation will need two more steps:

xb2c hello.b -o hello.c

produced a translated C-sourcefile hello.c.

If you have the gnu C compiler available you can compile it to an independent

executable program called hello with:

30

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.4. PROGRAM STRUCTURE

gcc hello.c -o hello -lm -lX11 -lx11basic -lasound -lreadline

There you go. Your program can now directly be started with

./hello

3.4 Program structure

If you want to write more sophisticated programs than the Hello-example, you

should understand the general structure of a X11-Basic program.

A X11-Basic program consist of a main program block and subroutines. The

main program block is the shell of the program and is the section between the first

line and the keyword END (or QUIT). The code in the main block drives the logic

of your program. In a simple program this is all that is needed. In larger and more

complex programs, putting all your code in the main block makes the program hard

to read and understand. Subroutines let you divide your program in manageable

sections, each performing its own specific, but limited, tasks.

3.5 General Syntax

The syntax of a typical X11-Basic line is

COMMAND parameters

parameters usually consists of a list of comma separated expressions. Another

type of X11-Basic lines are variable assignments

variable=expression

variables typically have a name and can have different types. The result of the

expression will be stored under that name for further reference. Each line of X11-

Basic code can contain exactly one command or one assignment (or a comment).

Here is a typical piece of X11-Basic code:

LOCAL l,ll,content$,g$,gg$,comp
CLR comp
IF EXIST(f$)
OPEN "I",#1,f$
ll=LOF(#1)

31

3.5. GENERAL SYNTAX CHAPTER 3. PROGRAMMING IN X11-BASIC

content$=INPUT$(#1,ll)
CLOSE #1

ENDIF
’ and so on

Appending lines

With many editors a limitation on the maximal line length applies (e.g. 4096 charac-

ters/line1). In X11-Basic a single command may in very rare cases consist of more

than 4096 characters (e.g. by assigning an array constant to an array). Therefor

a possibility of splitting lines into two (or more) has been implemented. If the last

character of a line is a ’\’ (it must be really the last character of the line and may

not be followed by a space character!), the following line will be appended to this

line by replacing the ’\’ and the following newline character by spaces.

Example:

PRINT "Hello,"; \
" that’s it"

will be treated as:

PRINT "Hello,";" that’s it"

Please note: The ’\’ character must be placed at a position within the com-

mand where a space would be allowed, too.

Comments

A comment can be inserted into your program code with the REM command or

the abbreviation ’. Also the ’#’ as a first character of the program line reserves

the rest of the line for a comment. Anything behind the REM will be ignored by

X11-Basic.

If you want to place comments at the end of a line, they have to be prefaced

with ’!’.

1Note, that in X11-Basic itself there is no limitation on the line lengths.

32

CHAPTER 3. PROGRAMMING IN X11-BASIC3.6. THE VERY BASIC COMMANDS: PRINT, INPUT, IF AND GOTO

Example:

’ This is a demonstration of comments
DO ! endless loop
LOOP ! with nothing inside

Note: These end of line comments can not be used after DATA (and REM).

3.6 The very BASIC commands: PRINT, INPUT, IF and GOTO

The PRINT-command is used to put text on the text screen. Text screen means

your terminal (under UNIX) or the console window (under Windows). PRINT is

used to generate basic output, e.g. text, strings, numbers, e.g. the result of a

calculation. Some basic formatting is possible.

Example:

PRINT "The result of 1+1 is: ";1+1

With the INPUT command you let the user input data, p.ex. numbers or text.

The data can be entered on the text screen/console window. Together with PRINT

this allows already to implement a very simple user interface.

Example:

INPUT "Please enter your name: ",name$
PRINT "Hello ";name$

The IF command let the program do different things depending on the result

of a calculation. Therefor the code is grouped into a block which should only be

executed if the result of the expression after IF is TRUE (this means, not zero). The

block starts with the IF command and ends with an ENDIF command. If the result

of the expression after IF is not TRUE, means it is FALSE (or zero), the program

will be continued after the ENDIF and the lines of code between the IF and the

ENDIF are not run.

Example:

INPUT "Please enter a number: ";a
IF a=13

33

3.7. VARIABLES CHAPTER 3. PROGRAMMING IN X11-BASIC

PRINT "Oh, you obviously like the thirteen!"
ENDIF
PRINT "Thank you for the ";a;"."

With GOTO you can branch to a different part of your program. GOTO, despite

its bad reputation ([goto considered harmful]), has still its good uses. Since no line

numbers are used, you must use a label to define lines where the GOTO command

can jump to.

Example:

again:
INPUT "Please enter a number, but not the 13: ";a
IF a=13
PRINT "Oh, you obviously like the thirteen!"
PRINT "But, please enter a different number."
GOTO again

ENDIF
PRINT "Thank you for the ";a;"."

Besides these four very basic commands (which exist in every BASIC dialect)

X11-Basic has many more features which make life easier and your programs more

user friendly.

3.7 Variables

Variables in BASIC programming are analogous to variables in mathematics. Vari-

able identifiers (names) consist of alphanumeric strings. These identifiers are used

to refer to values in computer memory. In the X11-Basic program, a variable name

is one way to bind a variable to a memory location; the corresponding value is

stored as a data object in that location so that the object can be accessed and

manipulated later via the variable’s name.

Example:

a=1 ! Assigns a 1 to a variable named a
b=a+1 ! The variable a can be referred to, to make a calculation
PRINT "The variable b contains now a ";b

34

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.7. VARIABLES

Variable names can be very long if you like and also can contain digits and an

underscore, with the exception, that the first letter of the variable name must not

be a digit.

Example:

my_very_long_variable_name=1.23456
PRINT my_very_long_variable_name

You can refer to a variable by giving its name in the place you want the value of

the variable to be used. X11-Basic will automatically know where to store the data

and how to deal with it.

It is also important to tell X11-Basic what sort of data you want to store. You can

have variables that store only numbers but also variables that deal with a character

or a whole string, a line of text for example. The following line of X11-Basic code

will create a variable called age for you and assign it the value of 18.

age=18

But if you want to store a text, the variable needs to be capable to hold characters

instead of numbers. Therefore, in that case you mark the variable with a $ to tell

that it should store text, not numbers:

name$="Robert"

Text constants, by the way, need to be enclosed with "", to tell X11-Basic that the

text should not be interpreted as program code, but just be treated as any text.

The assignment is done with the ’=’ operator. The ’=’ operator is also used in

expressions, e.g. after an IF command. But there it is not used as an assignment

operator but instead there it is treated as a comparison operator. In X11-Basic both

operators are ’=’. The interpreter distinguishes between them just by context.

Example:

x=(a=3)

Here the first = is an assignment and the second is the comparison operator. x

will be assigned a -1 (TRUE) if a is 3 and a 0 (FALSE) else. The brackets are

35

3.7. VARIABLES CHAPTER 3. PROGRAMMING IN X11-BASIC

not necessary here they just help reading this expression. Confused? Well, you

eventually will get used to it.

Last to say, such an assignment will overwrite any old data that has been stored

before in that variable. As long as you don’t assign a value to a variable, it will hold

a default value, 0 in most cases.

3.7.1 The scope of a Variable

X11-Basic uses two scopes for variables: global (which is the default) and local.

Global variables can be modified from anywhere within the program, and any

part of the program may depend on it. Unless otherwise declared with LOCAL, all

X11-Basic variables are global by default and this need not be explicitly declared.

But there is one downside of global variables: The use of global variables makes

software harder to read and understand. Since any code anywhere in the program

can change the value of the variable at any time, understanding the use of the

variable may entail understanding a large portion of the program. They can lead to

problems of naming because a global variable makes a name dangerous to use for

any other local scope variable. Also recursive programming is nearly impossible

with only global variables, last but not least, the usage of procedures and functions

becomes much more clear, if you are able to encapsulate all internal variables

of that function and you do not bother outside of the functions scope if you acci-

dentally use one of these internal variables somewhere else in the code, possibly

altering the functions behavior.

Because of all this, X11-Basic also provides local variables, which live only

within a certain function or procedure and their context.

Local variables need to be declared with the command LOCAL inside the func-

tion od procedure where they belong to. Outside this specific procedure or function

they simply do not exist, or if a global variable of the same name exists, they refer

to different contents.

3.7.2 Data types

Now, lets come back to the type of a variable. How can one see what kind of

content a variable can store? How does X11-Basic know? By the way the name

of the variable has been written. To distinguish between different ways of data

types X11-Basic appends a special typing sign as a suffix to the variable name to

distinguish between several ways to store data in variables.

36

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.7. VARIABLES

The X11-Basic interpreter uses 64-bit floating point variables, 32-bit integer

variables, character strings and arrays of these variables of arbitrary dimension.

A declaration of the variables and of their type is not necessary (except for arrays

→ DIM), because the interpreter recognizes the type of the variable from the suffix:

32bit integer variables have the suffix %, arbitrary precision integer variables have

a &, complex variables a #, character strings a $, arrays a (). Variables without suf-

fix are treated as real 64bit floating point variables. Pointers are integers, function

calls are marked by @. Logical expressions are also of type integer. It is important

that variables with a special suffix are different from those (even if the rest of the

name is identical) without.

Examples:

x=10.3 ! this is a number variable (64bit floating point)
x$="Hello" ! this is a different character string variable
x%=5 ! this is a (32bit) integer variable, different
x&=79523612688076834923316 ! this is a big integer variable,

! still different
x#=3+4i ! this is a complex number variable,
@x ! this refers to a function or procedure x
x()=[1,2,3,4] ! this beast refers to an array.

3.7.3 Variable naming

You can use all letters and numbers for your variable names. Spaces are not

allowed but underscores inside the variable name. The variable name can be

of any length. X11-Basic limits you only in the following ways: a variable may

not begin with a number or an underscore, only with letters. Avoid to name your

variables like X11-Basic commands. It will work but it can cause troubles. As a

rule, never try to assign values to X11-Basic system variables (like TRUE, FALSE,

TIMER, PC, TERMINALNAME$). The values indeed will be assigned, but you never

can use the assigned values, since always the internal values will be used.

Valid variable names look like the following:

x, auto%, lives%, bonus1%, x_1, city_name$, debit, z# .

Invalid variable names look like this and X11-Basic will complain:

_blank, 1x, ?value%, 5s$, 1i, #u.

37

3.7. VARIABLES CHAPTER 3. PROGRAMMING IN X11-BASIC

Always remember: begin your variable names with a letter from A-Z and you are

on the safe side!

Variable names and commands are case insensitive. Each name is bound to

only one kind of variable; A$ is a whole different variable(value) than A which is

different from A% or A$(1,1).

Space between commands will be ignored, but note that no space is allowed

between the name of a variable or command and the ’(’ of its parameter list. So,

ASC("A") is good, ASC("A") also, but ASC ("A") isn’t.

Examples:

integer variables: i%=25
my_adr%=VARPTR(b$)
b%=MALLOC(100000)

big integer variables: i&=79523612688076834923316
a&=FACT(100)

float variables: a=1.2443e17
b=@f(x)

complex variables: a#=1.2443e17+1.2i
b#=CONJ(a#)

character strings: t$="Hello everybody !"
fields and arrays: i%(),a(),t$(), [1,3,5;7,6,2]

3.7.4 Numbers

X11-Basic normally uses integer numbers (32 Bit) which range from -2147483648

to 2147483647, and floating point numbers, which are 64Bit IEEE 754 standard

values. These 64bit floating point numbers have a mantissa of of 52 bits and

an exponent of 11 bits and a sign bit. These numbers can represent 15 to 16

significant digits and powers of 1e-308 to 1e308. Complex numbers consist of two

64bit floating point values.

X11-Basic currently also support infinite precision integer numbers. These

numbers are stored in a variable size portion of memory, so that an arbitrary num-

ber of digits can be stored. However, calculation with big interges is slow and only

a few built-in functions can be used on them.

38

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.7. VARIABLES

Number (constants) can be preceded by a sign, + or -, and are written as a

string of numeric digits with or without a decimal point and can also have a positive

or negative exponent as a power of 10 multiplier e.g.

-253 67.3 0.25 -127.42E-3 -1.3E7 1

The imaginary part of complex number constants are market with a trailling "i",

e.g.

-2i 1i 0.25+3i -127.42E-3i

Note: A single "i" is always treated as a real variable name. If you want the imagi-

nary unit, please always use "1i".

Integer numbers, with no decimal fraction or exponent, can also be in either

hexadecimal or binary. Hexadecimal numbers should be preceded by $ (or 0x)

and binary numbers preceded by %, e.g.

%101010 -$FFE0 0xA0127BD -%10001001 %00011010

3.7.5 Strings

String variables can contain sequences of characters (bytes) of arbitrary length.

There is no length limit for a string other than the virtual memory of the machine.

Strings generally contain ASCII text, but can hold arbitrary byte sequences, even

characters that have the ASCII code zero. In other words a string is a collection

of bytes of certain length. You can treat strings as arbitrary length of binary data

if you need. Strings are automatically elastic, meaning they automatically resize

to contain whatever number of bytes are put into them. When a string resizes, its

location in memory may change, as when a longer string is assigned and there is

insufficient room after the string to store the extra bytes.

String variables are distinguished by the $ suffix.

String constants are enclosed with pairs of "" (double quote).

A wealth of intrinsics and functions are provided to support efficient string pro-

cessing and manipulating.

There is a way to include special characters into string constants. The usual

way in BASIC is to split the string into sub strings and concatenate the parts during

run time, like in the code fragment:

39

3.7. VARIABLES CHAPTER 3. PROGRAMMING IN X11-BASIC

Example:

st$="This is a special string, containing a bell character at the end"+CHR$(7)

By the way, the double quote character can be added with CHR$(34).

3.7.6 Arrays

Arrays are memory locations that store many values of the same type at the same

time. While normal variables store a single value at a time, an array variable can

store many values. The values are accessed via the name of the variable and the

appropriate indexes. The index or indexes follow the name of the variable between

(and).

There is no limit on the number of indexes (the dimension). You can use as

many as you like. Also there is no limit on the index values other than the index

values have to be positive integer and that memory may limit the array sizes.

X11-Basic arrays can contain variables of any data type, including strings. All

arrays, even multi-dimensional arrays, can be re-dimensioned without altering the

contents. A special feature of X11-Basic is the implicit dimensioning of arrays

and the existence of array constants. You may define an array by using the DIM

command. You might also define the array by an assignment like

DIM b(10)
a()=b()

if b() already has been DIMed or by

a()=[1,2,3,4;6,7,8,9]

assigning an array constant. (In this example a 2 dimensional array will be created

and the rows are separated by ’;’.)

3.7.7 Arbitrary precision numbers

X11-Basic also support infinite or arbitrary precision numbers with a sprecial data

type. Arbitrary-precision arithmetic, also called bignum arithmetic, multiple preci-

sion arithmetic, or sometimes infinite-precision arithmetic, indicates that calcula-

tions are performed on numbers whose digits of precision are limited only by the

40

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.7. VARIABLES

available memory of the computer. This contrasts with the faster fixed-precision

arithmetic, normally used.

Infinite precision math is slow, and not all functions are available for this data

type. Arbitrary precision is used in applications where the speed of arithmetic is

not a limiting factor, or where precise results with very large numbers are required.

The data type with the suffix & supports (big) integers only. It is up to the user

(and straight forward) to write routines for handling rational numbers (using two

big interges, numerator and denominator), and corresponding routines for adding,

subtracting, multiplication and division of thouse fractions. Multiple precision Irra-

tional numbers using a floiting point representation are (currently) not supported.

If somebody needs this, please let me know.

Supported operators (for big integers) are + - * / = <> < > MOD and DIV. Sup-

ported functions are ABS(), SQRT(), NEXTPRIME(), FACT(), PRIMORIAL(), FIB(),

LUCNUM(), RANDOM(), ADD(), SUB(), MUL(), DIV(), MOD(), POWM(), ROOT(),

GDC(), LCM(), INVERT(), MIN(), MAX() and many more. Also STR$(), BIN$(),

OCT$() and HEX$() work with big integers.

The advantage is, that you can handle big integer numbers without loosing

precision, as it is useful for cryptography and number theory.

Also rounding errors can be avoided by using infinite-precision rational num-

ber arithmetic (which is not implemented by X11-Basic itself, but which could be

realized using pairs of big integers.)

Variables of either type may be used and mixed in expressions. They will be

converted to big integer or from big integer to float or 32bit integers when needed.

One should j ust be aware of the eventual loss of precision.

Here is an example how to use big number arithmetrics in X11-Basic to factorize

a big number into its prime factors:

Example:

’ Factorize (big) Integer numers into prime factors.
’ with X11-Basic >= V.1.23
’
DIM smallprimes&(1000000)
CLR anzprimes
smallprimes&(0)=2
INC anzprimes

41

3.7. VARIABLES CHAPTER 3. PROGRAMMING IN X11-BASIC

INPUT "Enter a (big) number: ",a&
PRINT "Calculating primes up to ";lim&;". Please wait..."
lim&=SQRT(a&) ! Limit up to which the primes are searchd
FOR i=1 TO DIM?(smallprimes&())-1
b&=NEXTPRIME(smallprimes&(i-1))
EXIT IF b&>lim&
smallprimes&(i)=b&

NEXT i
anzprimes=i
PRINT "calculated ";anzprimes;" primes up to: ";b&

PRINT "Factorization:"
PRINT a&;"=";
FOR i=0 TO anzprimes-1
WHILE (a& MOD smallprimes&(i))=0

PRINT smallprimes&(i);"*";
FLUSH
a&=(a& DIV smallprimes&(i))
lim&=SQRT(a&)

WEND
EXIT IF smallprimes&(i)>lim&

NEXT i
IF nextprime(a&-1)=a& or a&=1
PRINT a&

ELSE
’ The number is too big and we cannot be sure
’ that this is a prime
PRINT "----incomplete test -----";a&

ENDIF
END

Note that the list of small primes could also be generated by a sieve. The

method used is based on prime number tests (using the function NEXTPRIME())

and may be not optimal.

42

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.8. ARITHMETICS AND CALCULATIONS

3.8 Arithmetics and Calculations

X11-Basic handles numbers and arithmetic: You may calculate trigonometric func-

tions like SIN() or ATAN(), or logarithms (with LOG()). Bitwise operations, like

AND or OR are available as well as MIN() and MAX() (calculate the minimum or

maximum of its argument) or MOD or INT() (reminder of a division or integer part

or a number). Many other statements give a complete set of math functions.

Most of these functions can work on different input data types. E.g. you can use

the SQRT() function also on complex numbers, thus returning a complex result.

3.8.1 Expressions and Conditions

No difference makes the difference.

Expressions are needed to calculate values. The simplest expression is a numer-

ical or string constant. More complex expressions may contain constants,

variables, operators, function calls and possibly parentheses. The expres-

sion format used by X11-Basic is identical with that of many other BASIC

packages: The operators have precedence of the usual order and you can

alter the order of operator evaluation using parentheses. Here is an example

numeric expression following after a PRINT statement:

PRINT (x-1)*10+SIN(x)

Conditions and expressions are treated the same in X11-Basic. Because X11-

BASIC doesn’t have separate Boolean operators for conditions and expres-

sions, the operators (AND, OR, XOR, NOT) actually operate on binary values.

Therefore a TRUE is -1, which means, that every bit is one. So the operators

will operate on each of these bits. Such: a condition is considered TRUE if

the expression is not FALSE (means the result must be a value other than

zero).

3.8.2 Operators

X11-Basic provides operators for numerical expressions, character strings and ar-

rays of either type and any dimension.

43

3.8. ARITHMETICS AND CALCULATIONS CHAPTER 3. PROGRAMMING IN X11-BASIC

Numerical Operators

Numerical operators are roughly categorized in following categories:

• arithmetical operators: ^ * / + -
• comparison operators: = <> < > <= >=
• logical operators: NOT AND OR XOR ...

X11-Basic recognizes the following operators, in order of falling precedence

(the precedence of BASIC operators affects the order of expression evaluation):

Order Operator Description

1 () parenthetical expression

2 − sign (negation)

2 + sign

3 ^ exponent/power

3 / divide

3 * multiply

4 + add

4 - subtract

5 << bitwise shift to the left (*)

5 >> bitwise shift to the right (*)

6 = logical "equals"

6 <> logical "not equal"

6 < logical "less than"

6 > logical "greater than"

6 <= logical "less than or equal"

6 >= logical "greater than or equal"

7 NOT bitwise not

8 DIV integer division

9 MOD modulus (rest of division)

10 IMP implies

10 EQV equivalence

10 XOR bitwise exclusive or

10 NOR bitwise not or

10 NAND bitwise not and

10 AND bitwise and

10 OR bitwise or

44

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.8. ARITHMETICS AND CALCULATIONS

11 = assignment

12 , comma

(*) = not implemented

Addition and subtraction operators are both binary and unary operators. In

their unary form they are used out of the precedence orders. Unary oper-

ators are always applied first, unless parentheses drive different calculation

order.

The power operator a^b calculates the b-th power of a. The actual implemen-

tation of the power operator always uses the pow() function, which always

treats all operants as real numbers. Under some circumstances it might be

more optimal to use a*a instead of a^2.

The multiplication operator multiplies the operands. If any of the operands is an

array then the result will be an array.

The division operator divides the first operand with the second. If the second

operand is zero then an error will occur.

The integer division operator divides the first operand with the second. The cal-

culation is performed using integer numbers and the result is truncated to-

wards zero.

Bit-wise and logical NOT This unary operator calculates the logical negate (the

complement) of the operand. The calculation is done on integer numbers,

thus the operand is converted to an integer value. The operator inverts each

bit of the operand.

Logical operators (AND, OR, XOR) These operators can be used for both logical

and bit-wise operations. X11-Basic does not have a separate type for logical

values. The logical TRUE is represented as integer value -1 (all bits set to

1) and the logical FALSE is 0. The operators AND, OR and XOR perform

the calculation on integer values. If any of the operands is not integer it is

converted to integer value before the operation takes place. The operations

are performed on each bit of the operands.

Operators for Character Strings

There are a few operations which can directly be done to character strings or string

variables, using operators.

45

3.8. ARITHMETICS AND CALCULATIONS CHAPTER 3. PROGRAMMING IN X11-BASIC

plus operator, conjunction The plus ’+’ operator used on strings, links two strings

together.

Example:

a$="X11"
b$="-"
c$="BASIC"
d$=a$+b$+c$

results in a string "X11-BASIC".

comparison operators, <, <=, =, =>, >, <> comparison functions belong to numer-

ical (Boolean) functions because the result is a number, although they can be

used with strings.

Example:

IF a$="X11"
...

ENDIF
result=(a$<>"Hello")

code evaluation operator, & the eval operator evaluates command or expression

which is given by the String. Example see below.

Rules for comparison of strings:

1. Two strings are equal if all the characters inside are identical (also spaces

and punctuation marks).

Example:

" 123 v fdh.-," = " 123 v fdh.-,"
2. The comparison of strings with the greater and smaller operator works char-

acter by character until one of them is smaller or one of the strings ends first,

this is the smaller one.

Examples:

46

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.8. ARITHMETICS AND CALCULATIONS

"X11">"X11" result: 0
"X11"<"x11" result: -1
"123"<"abc" result: -1
"123">"1234" result: 0

The Evaluation Operator &: The &-operator followed by a string evaluates it for pro-

gram code.

Example:

REM generate ten times the command ’print a$’
CLR i
a$="print a$"
label1:
INC i
IF i>10

b$="label2"
ELSE

b$="label1"
ENDIF
&a$
GOTO &b$
label2:
END

To program like this can produce a really unreadable code.

3.8.3 String processing

X11-Basic has the usual functions to extract parts from a string: LEFT$(), MID$()
and RIGHT$().

If you want to split a string into tokens you should use the command SPLIT or

the function WORD$() .

There is quite a bunch of other string-processing functions like UPPER$() (con-

verting to upper case), INSTR() (finding one string within the other), CHR$() (con-

verting an ASCII-code into a character), GLOB() (testing a string against a pattern)

and more.

47

3.8. ARITHMETICS AND CALCULATIONS CHAPTER 3. PROGRAMMING IN X11-BASIC

3.8.4 Arrays

Arrays are special variables which consist of many values (of the same type).

There can be floating point arrays, integer arrays, string arrays, and arrays of ar-

rays. The memory for an array need to be declared before it can be used. This can

be done with the DIM statement or by direcly assigning a value to the array.

Array constants

The common way to assign data to a whole array is to put the input figures into list

into square brackets (which forms an array constant) and assign this to an array

variable like:

a()=[1,2,3;4,5,6]

A comma is used to separate columns elements, and semicolon is used to sepa-

rate rows. So [1, 2, 3] is a row vector, and [1; 2; 3] is a column vector.

Now that you know how to define a simple array, you should know how to access

its elements. Accessing the content of an array is done through the operator (), with

the index inside the parenthesis; the indexing of the first element is 0:

b=a(0)
a(1)=5

Accessing an element outside the bounds will result in an error: "Field index

too large."

To access a single matrix element, you can use the (i,j) subscript, where i is the

index in the row, and j in the column:

b=a(1,2)
a(3,4)=3

It is also possible to access blocks of matrices using the colon (:) operator. This

operator is like a wildcard; it tells X11-Basic that you want all elements of a given

dimension or with indexes between two given values. For example, say you want

to access the entire first row of matrix a above, but not the second row. Then you

can write:

48

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.8. ARITHMETICS AND CALCULATIONS

b()=a(1,:)

Now say you only want the first two elements in the first row. To do this, use the

following syntax:

b()=a(1,1:2)

It is also possible to use arrays of any higher dimension.

DIM a(10,10,10,10,10)
b=a(2,5,4,2,7)

Array operators

Arrays are not only good for storing information in tables, but one can apply opera-

tions on arrays. You can for example use the classic arithmetic operations + and -

on any array in X11-Basic: this results in the vector addition and subtraction as de-

fined in classic vector vectors spaces, which is simply the addition and subtraction

elements wise.

Array Operator Description

+ Vector/Matrix addition element by element

- Vector/Matrix subtraction element by element

* Array/Matrix multiplication

: Subarray (a block)

=,<> comparison element by element

<,>,<=,>= comparison using a norm

Array functions and operators act on entire arrays. Some return a list, which

can then either be used as a value for another array function, or assigned into an

array variable.

Array comparisons compare the array contents element-by-element, using the

default comparison function for the element data type (=,>,<). In multidimen-

sional arrays the elements are visited in row-major order (last subscript varies most

49

3.9. PROCEDURES AND FUNCTIONS CHAPTER 3. PROGRAMMING IN X11-BASIC

rapidly). If the contents of two arrays are equal but the dimensionality is different,

the first difference in the dimensionality information determines the sort order.

3.9 Procedures and Functions

In X11-Basic there are two types of subroutines: procedures and functions. The

main difference between the two is that a function returns a single value and can

be used in expressions, while a procedure never returns a value. A procedure or

function must appear after the main program block. Therefore, the structure of an

X11-Basic program is as follows:

Main program block
END
Procedures and Functions

Procedures are blocks of code that can be called from elsewhere in a program.

These subroutines can take arguments but return no results. They can ac-

cess all variables available but also may have local variables (–> LOCAL).

Functions are blocks of code that can be called from elsewhere within an expres-

sion (e.g a=3*@myfunction(b)). Variables are global unless declared local.

For local variables changes outside a function have no effect within the func-

tion except as explicitly specified within the function. Functions arguments

can be variables and arrays of any data types. Functions can return variables

of any data type. By default, arguments are passed by value.

3.9.1 Procedures

A procedure starts with the keyword PROCEDURE followed by the procedure name

and the parameters being passed to the procedure. All procedures must end with

the keyword RETURN. Procedures use the following format:

PROCEDURE ProcName(parameters)
LOCAL vars
procedure logic

RETURN

The parameters of the subroutine are placed between parenthesis behind the

subroutine name and must be in the same order as the procedure call from the

50

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.9. PROCEDURES AND FUNCTIONS

main program. All variables used within the subroutine should be declared local

using the LOCAL statement. The rest of the procedure determines the task the

subroutine must perform.

A procedure can be called in two ways: by using the keyword GOSUB or @.

For instance, the procedure progress(), which shows a progress bar on the text

console given the total amount a and the fraction b, can be called the following

ways:

GOSUB progress(100,i)
@progress(100,i)

PROCEDURE progress(a,b)
LOCAL t$
IF verbose
PRINT CHR$(13);"[";STRING$(b/a*32,"-");">";
PRINT STRING$((1.03-b/a)*32,"-");"| ";
PRINT STR$(INT(b/a*100),3,3);"%]";
FLUSH

ENDIF
RETURN

3.9.2 Functions

A function starts with a FUNCTION header followed by a function name, and ends

with the keyword ENDFUNCTION. The function is either a numeric or a string func-

tion. A numeric function defaults to the floating point data type and needs no

postfix. A string function returns a string and the function name ends with a $ post-

fix. A function must contain at least one RETURN statement to return the function

value. Functions use this format:

FUNCTION FuncName[$](parameters)
LOCAL vars
function logic
RETURN value[$]

ENDFUNCTION

The type of the return value must match the function type. A string function must

return a string and a numeric function a numeric value. The function returns to the

51

3.9. PROCEDURES AND FUNCTIONS CHAPTER 3. PROGRAMMING IN X11-BASIC

caller when the RETURN statement is executed. The ENDFUNCTION statement only

indicates the end of the function declaration and will cause an error if the program

tries to execute this statement.

A function is called by preceding the function name with @. As an example, the

string function Copy$() is called as follows:

Right$=@Copy$("X11-Basic",4)

where the function Copy$() might be defined as:

FUNCTION Copy$(a$,p)
LOCAL b$
b$=MID$(a$,p)
RETURN b$

ENDFUNC

Of course you are as well free to define

FUNCTION Copy$(a$,p)
RETURN MID$(a$,p)

ENDFUNC

instead.

An alternative for FUNCTION is the DEFFN statement, which defines a one line

function. The function Copy$() used in the example above, might be used in a

DEFFN statement as well:

DEFFN Copy$(a$,p)=MID$(a$,p)

In contrast with procedures and functions, DEFFN functions may be placed

within a procedure or function body, although it doesn’t use the local variables

of the subroutine. There is another difference between DEFFN and FUNCTION:

The compiler will use the DEFFN expression as an inline expression and will not

produce a function with a symbol name. This is a bit faster, but produces longer

code.

52

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.9. PROCEDURES AND FUNCTIONS

3.9.3 Parameters and local variables

Any X11-Basic variable type can be passed to a procedure or function. By default

all parameters are passed "’by value"’. Though parameters can also be passed

"’by reference"’ by using the VAR statement.

The keyword VAR precedes the list of variables that are being passed as call by

reference parameters. These variables should always be listed at the end of the

parameter list in the procedure or function heading. The difference between the

two is that a call by value parameter gets a copy of the passed value and a call by

reference does not. A VAR variable references the same variable that is passed to

the subroutine. The original variable will change when a subroutine modifies the

corresponding VAR variable. In fact, both variable names reference the same piece

of memory that contains the variable value.

Internally, X11-Basic maintains a list of all variables. Each entry in the list points

to a memory location that contains the variable value. A call by reference variable

points to the same location as the passed variable. Therefore, constants or ex-

pressions can not be passed to a VAR variable.

All though a (copy of an) Array can be passed to a subroutine by value, the

functions cannot return arrays1.

If a function needs to return information in form of an array, the return array

sould be passed as a VAR parameter in the parameter list. The return values can

then be assigned to it inside the function.

The following example shows a simple function, which searches a name in a

given string array:

idx%=@SearchName("Jack",Name$())

FUNCTION SearchName(n$,VAR n$())
LOCAL idx
CLR idx
WHILE idx<DIM?(n$()) AND n$(idx)<>n$
INC idx

WEND
RETURN idx

ENDFUNC

1This may be possible in future versions of X11-Basic

53

3.10. SIMPLE INPUT/OUTPUT CHAPTER 3. PROGRAMMING IN X11-BASIC

The locally used array n$() references the global array Name$(). The array

n$() is only valid within the procedure, where it points to the descriptor of the

Name$() array.

You could as well declare the FUNCTION like

FUNCTION SearchName(n$,n$())

Then a local copy of the whole array Name$() would be used inside the function,

any changes to n$() would have no effect on the original array Name$(). But win

case you wanted to make changes to the array, like in following example:

idx%=@EliminateName("Jack",Name$())

FUNCTION EliminateName(n$,VAR n$())
LOCAL i
FOR i=0 TO DIM?(n$())

IF n$=n$(i)
n$(i)="deleted."

ENDIF
NEXT i
RETURN i

ENDFUNC

you need to use VAR.

The LOCAL statement lists the variables only known to a procedure or function.

Subroutine parameters are local variables as well. When a subroutine calls another

subroutine the local variables of the calling routine are known in the called routine

as if they were global variables.

Several local variables separated by commas may be listed after the LOCAL
statement. Multiple LOCAL lines are allowed.

3.10 Simple Input/Output

There are many ways in X11-Basic to take data by the user and display other data.

This can be done by taking data from the keyboard, the mouse, a microphone, etc.

and by displaying data to the text console, the graphics window, the speaker, etc.

Also reading and writing to files and internet connections can be done.

54

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.10. SIMPLE INPUT/OUTPUT

The most basic input and output from and to the user is by using the text con-

sole, the so-called standard input and standard output. This is done in X11-Basic

like in all BASIC dialects with the basic commands PRINT and INPUT.

3.10.1 Printing data to the console

You actually already know a X11-Basic command to write data on screen. This

command is PRINT. It is very versatile and you can extend it in various ways.

The syntax of PRINT is simple:

PRINT <data>

where <data> is whatever sort of data you want to print on screen. That can be

variables, numbers, the result of a calculation, a string or a mix of them all. You

can even add special commands and functions to your PRINT statement for screen

control such as cursor positioning and formatting of the data. A few examples for

the PRINT command can be found here:

PRINT 10+5
PRINT x%
PRINT 10;20;30
PRINT 10,20,30
PRINT "Hello!"
PRINT 10.123 USING "+##.###"
PRINT "y= ";y
PRINT "x=";x;" y=";y;" z=";z
PRINT "Your name is ";nam$
PRINT AT(5,5);"AT() is one of my favorites"
PRINT CHR$(27);"[2J This is a cleared console..."

These are the most simple variations of the PRINT command. They can of

course be more complicated and all features can be combined.

Now why do you write PRINT "y =";y instead of PRINT "y =",y? Using

; will add the following data directly behind your text without altering the cursor

position while the , will advance the cursor to the next vertical tabular position.

You can use that to align your data in tables on screen. In short, if you want to

write data directly to some sort of prompt or behind some text, use the ; notation.

Put a ; as the last data on your PRINT statement to let the cursor stay on the

55

3.10. SIMPLE INPUT/OUTPUT CHAPTER 3. PROGRAMMING IN X11-BASIC

current line. You can use this to prevent a scrolling on the last line of the screen

or if you simply want to split writing of prompt and data into two lines of code.

Technically speaking giving the ; last will suppress a carriage return.

3.10.2 Screen control

Now that you know how to write your data on screen, you will also want to know

how to handle screen output in detail. How do I leave a line of text blank might you

ask? Write simply PRINT without any data behind to output a blank line on screen.

Try this 3 lines program:

PRINT "Hello!"
PRINT
PRINT "This is the first example for screen control!"

As you see it prints the greeting and the other line with an empty line between.

A very important thing is how to clear the screen. For obvious reasons, you’ll

sometimes prepare a screen layout that requires you not to have other text or old

data on screen. You’ll simply clear the screen with the following command.

CLS

A neat thing is to write on screen exactly on a position where you want and not

following the listed flow of ordinary PRINT statements. You can use the AT() state-

ment. This special addition for PRINT allows you to position the cursor freely on

screen so you can write your data where you want. Let’s try the following example

program:

CLS
PRINT AT(1,1);"Top left"
PRINT AT(5,13);"Middle line, text indented 5 chars"
PRINT AT(20,25);"bottom line";

The syntax for PRINT AT(); is PRINT AT(column, row);, where row 1 is on

top of the screen and column 1 on the left end. Column and row can be variables,

expressions or simply a plain number. Valid PRINT AT() commands are:

56

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.10. SIMPLE INPUT/OUTPUT

PRINT AT(1,5);"Hello"
PRINT AT(5+x%,10);"x"
PRINT AT(4+8,y%);"y = "

How many character positions you have depends on the current text console

screen size. You have almost always at least 24 lines of text. 80 columns are

standard. If you want to exactly know the number of rows and columns of the text

screen, you can use the (system) variables ROWS and COLS.

> PRINT ROWS,COLS
24 80

There are more commands you can use with PRINT like SPC() and TAB().

Refer to the command reference on them.

3.10.3 Formatting output with PRINT USING

X11-BASIC normally prints numbers in a form convenient for most purposes. But

on occasion you may prefer a more elaborate form. For example, you may want

to print financial quantities with two decimal places (for cents) and, possibly, with

commas inserted every three digits to the left of the decimal point. Or, you want

to print the numbers in scientific notation. PRINT USING provides a way to print

numbers in this and almost any other form1.

The generic syntax is

PRINT <expression> USING "<format string>"

. The result of the expression should be a number. The format string defines how

you want your data to be formatted on screen. The format string may be a string

variable, a quoted string, or a more general string expression.

PRINT USING also allows one to print strings centered or right-justified, as well

as left justified.

The function USING$() duplicates the PRINT USING statement almost exactly2

but returns the result as a string rather than printing it on the screen.

Unlike STR$(), where you can specify the length of the string, the number of

significant digits of the number and a flag, where there leading zeroes should be

1There are also other built-in commands for formatting data on output. X11-Basic offers e.g. STR$(). Please

refer to the sections on functions for details on the syntax of STR$().
2only numbers can be formatted, no strings.

57

3.10. SIMPLE INPUT/OUTPUT CHAPTER 3. PROGRAMMING IN X11-BASIC

used, USING$() and PRINT USING use a classic and BASIC-style formatter string

for formatting numbers. The difference between USING$() and PRINT USING is

just, that PRINT USING immediately prints out the formatted number and USING$()
converters it into a string containing the formatted number, suitable for further pro-

cessing.

Formatting Numbers

The format string can contain any letters, but some have a special meaning. All

other characters are just taken as they are. The length of the format string defines

the length of the output field. Whatever is formatted, it will exactly take as many

characters as the length of the format string.

The most important special character in the format string is the symbol #, which

stands for a digit position to be filled with one digit from the number to be formatted.

For example, compare the output resulting from two similar PRINT statements, the

first a normal PRINT statement and the second employing USING.

x= |PRINT x| PRINT x USING "###"
-----+-------+--------------------
1 | 1 | 1
12 | 12 | 12
123 | 123 | 123
1234 | 1234 | ***
-12 | -12 | -12

Without USING, the number is printed left justified and occupying only as much

space as needed. With USING, the format string "###" specifies a field length of

exactly three characters. The number is printed right-justified in this field. If the field

is not long enough to print the number properly, asterisks are printed instead. If all

you need to do is to print integer numbers in a column but with right-justification,

then the preceding example will suffice. Note that a negative number will be printed

with the sign occupying one of the digit fields.

With printing financial quantities it is conventional that the decimal points are

aligned. Also, you may want to print two decimal places (for the cents) even when

they are zero. The following example shows how to do this. (In order to print

negative numbers and have the sign at a fixed position, the format string should

start with a minus sign.)

58

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.10. SIMPLE INPUT/OUTPUT

x= |PRINT x USING "-##.##"
------+-----------------------
1 | 1.00
1.9 | 1.90
-3.14 |- 3.14
1.238 | 1.24
123 |******
0 | 0.00
-123 |******

Notice that in this example two decimal digits are always printed, even when

they consist of zeroes. Also, the result is first rounded to two decimals. If the num-

ber is negative, the minus sign occupies the leading digit position or the position

given by a - or + in the format string. If the number is too long to be printed properly

(possibly because of a minus sign), asterisks are printed instead.

Financial quantities are often printed with a leading dollar sign ($), and with

commas forming three-digit groups to the left of the decimal point. The following

example shows how to do this with PRINT USING.

x= |PRINT x USING "$#,###,###.##"
-----------+------------------------------
0 |$ 0.00
1 |$ 1.00
1234 |$ 1,234.00
1234567.89 |$1,234,567.89
1e6 |$1,000,000.00
1e7 |10,000,000.00
1e8 |*************

The dollar sign is only printed if the space is not needed for a digit. It is always

in the same position (first) in the field. The separating commas are printed only

when needed.

In case you want the dollar sign ($) to float to the right, so that it appears next

to the number, avoiding all those blank spaces between the dollar sign and the first

digit in the preceding example. The following example shows how to do this.

x= |PRINT x USING "$$,$$$,$$#.##"
-----------+----------------------------

59

3.10. SIMPLE INPUT/OUTPUT CHAPTER 3. PROGRAMMING IN X11-BASIC

0 | $0.00
1 | $1.00
1234 | $1,234.00
1234567.89 |$1,234,567.89

The format string can also allow leading zeroes to be printed, or to be replaced

by asterisks (*). You might find the latter useful if you are preparing a check-writing

program.

x= |PRINT x USING "$0,000,000.##"
-----------+------------------------------
0 |$0,000,000.00
1 |$0,000,001.00
1234 |$0,001,234.00
1234567.89 |$1,234,567.89

x= |PRINT x USING "$*,***,***.##"
-----------+------------------------------
0 |$********0.00
1 |$********1.00
1234 |$****1,234.00
1234567.89 |$1,234,567.89

x= |PRINT x USING "*$$,$$$,$$#.##"
-----------+------------------------------
0 |*********$0.00
1 |*********$1.00
1234 |*****$1,234.00
1234567.89 |*$1,234,567.89

For compatibility reasons, a % can be used instead of the 0’s in the format

string, with one exception: The first character in the format string must not be a

%1.

You can also format numbers using scientific notation. Because scientific nota-

tion has two parts, the decimal-part and the exponent-part, the format string must

also have two parts. The decimal-part follows the rules already illustrated. The

1If the first character is a % the format string is interpreted as a C style printf format string (see below).

60

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.10. SIMPLE INPUT/OUTPUT

exponent-part consists of from three to five carets ()̂ that should immediately follow

the decimal-part. The following example shows how.

x= |PRINT x USING "+#.#####^^^^"
------------+-----------------------------
0 |+0.00000e+00
123.456 |+1.23456e+02
-.001324379 |-1.32438e-03
7e30 |+7.00000e+30
0.5e100 |+5.00000e+99
5e100 |************

The leading plus sign (+) in the format string guarantees that the sign of the

number will be printed, even when the number is positive. Notice that the last

number cannot be formatted because the exponent part would have been 100,

which requires an exponent field of five carets. Notice also that if there are more

carets than needed for the exponent, leading zeroes are inserted. Finally, notice

that trailing zeroes in the decimal part are printed.

In addition to the format rules explained above, X11-Basic offers another but

different set of format strings. If the first character of the format string is a % the

format string is treated as a C style so-called printf-formatter.

Here are some examples:

x= |format$= |PRINT x USING format$
------------+------------------------------------
0 | "%012g" |000000000000
123.456 | "%.1g" |1e+02
-.001624 | "%.1g" |-0.002

These formatting strings follow some standard which is normally not used in BA-

SIC. The standard is well explained in Wikipedia: http://en.wikipedia.org/
wiki/Printf_format_string#Format_placeholders.

Formatting Strings

Strings can also be formatted through PRINT USING but not with the function

USING$(), although there are fewer options for strings than for numbers. Strings

can be printed in the formatted field either left justified, centered, or right-justified.

As with numbers, if the string is too long to fit, then asterisks are printed.

61

3.10. SIMPLE INPUT/OUTPUT CHAPTER 3. PROGRAMMING IN X11-BASIC

These examples should make it clear:

PRINT "|";"OK" USING "#####";"|" ! result: | OK |
PRINT "|";"OK" USING ">####";"|" ! result: | OK|
PRINT "|";"Hello" USING ">####";"|" ! result: |Hello|
PRINT "|";"Goodby" USING ">####";"|" ! result: |*****|

If centering cannot be exact, the extra space is placed to the right. Actually any

string can be used as a format string. Only the length of the string defines the

length of the output field. Only the first character of the format string matters. If it

is a < the string will be left justified, if it is a > it will be right-justified and centered in

any other case. This is especially valuable for printing headers for a numeric table.

The following example shows how you can format headers using the same format

string we used earlier for numbers.

s$= |PRINT s$ USING "$#,###,###.##"
----------------------+-------------------------------
"Cash" | Cash
"Liabilities" | Liabilities
"Accounts Receivable" | *************

3.10.4 Gathering User Input

You can make your program interactive and ask the user to enter data on runtime

of your program.

The command INPUT allows the user to enter one line of data with the keyboard

on the text console. The data is interpreted and stored in one or more variables

specified by the INPUT statement. If you specify a string variable, you can enter

text while you can only enter numeric data if you use a numeric variable. A minus

sign and optional decimal point are allowed for numeric input. Also numbers can

be entered in scientific notation. Hexadecimal values are possible, too.

INPUT "x= ",x
INPUT "What is your name? ",your_name$

This will prompt the user to enter a value for x which will be stored into a (floating

point) variable x. You can then use this variable in your program as normal, doing

62

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.11. FLOW CONTROL

calculations with it. Please note that your program will stop until the RETURN key

or the ENTER key has been pressed to terminate the input.

You can read more than one variable with one INPUT statement, just list your

variables where you want your input to go to with separating commas.

PRINT "enter 3 values, separated with commas (eq 3,4,5):"
INPUT x%,y%,z%

The user has then to enter commas at the appropriate places to tell which input

goes to which variable. To the example above the user would respond with 5,6,7.

CLS
INPUT "Enter a value for x:",x
PRINT "x = ";x
INPUT "What is your name?",your_name$
PRINT "Your name is ";your_name$;"."
PRINT "Bye, ";your_name$;"!"

While entering strings you may have already noticed that X11-Basic will treat

entering a comma again as a delimiter, effectively cutting your string at that comma.

Use the command LINEINPUT instead of INPUT to read strings.

LINEINPUT txt$

You can now enter strings with a comma in and it will be saved to the string

variable as well. You can read multiple strings with LINEINPUT as well but the user

has to press the RETURN key terminating each string to be entered.

3.11 Flow Control

This time you’ll finally make your programs do things more then once without hav-

ing to retype your code. The creation of so-called loops is essential for making

complex programs work. The concept of looping and simple counting loops

Before going further let me explain you the fundamental idea of looping. The

idea is to make your program repeat a section of code for a defined amount of time.

You may let X11-Basic count a variable for you and you can then use the value of

that variable in an ongoing calculation. Or you can let X11-Basic loop a certain

part of code until a special condition has been met. Take a look at the following

sample program:

63

3.11. FLOW CONTROL CHAPTER 3. PROGRAMMING IN X11-BASIC

FOR i%=1 TO 5
PRINT i%

NEXT i%

This little example program loops 5 times and counts the variable i% from 1 to

5 and prints the current value to the screen. This sort of loop is called a FOR-

NEXT-loop. You can use any numerical variable to count. Most often this sort of

loop is used to do things a certain amount of time or to iterate over a list. The

loop will repeat the code between the FOR and its corresponding NEXT. Each time

X11-Basic reaches the NEXT, it will increment the count variable and will stop the

loop if the maximum count has been reached.

You can of course have another loop inside the current one. Just make sure not

to use the same variable for counting or X11-Basic will do unpredictable things:

FOR i%=1 TO 5
FOR j%=1 TO 10

PRINT i%;" * ";j%;" = ";i%*j%
NEXT j%

NEXT i%

That sample program has one FOR-NEXT-loop in another and it calculates the

product of the both counter variables creating some sort of multiplication table.

Some rules and advice to keep in mind with FOR-NEXT-loops:

1. Always terminate an opened FOR with a corresponding NEXT.

2. Always terminate FOR-loops in the correct order. If you write FOR i%=. . . first

and FOR j%=. . . next, make sure to terminate the inner loop first.

3. You can count downwards with the word DOWNTO instead of TO. Try:

FOR i%=5 DOWNTO 1

4. You can count in steps not equal 1 with the keyword STEP:

FOR i%=1 TO 10 STEP 2

That will increment i% in steps of 2 until it reaches 10.

5. You can terminate the FOR-NEXT-loop with the EXIT IF statement.

64

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.11. FLOW CONTROL

Conditions

A very fundamental idea in programming is to create and use conditionals. These

will allow you to make decisions when certain conditions are met and let your

program take an alternative code segment.

Try to imagine that you count a special variable and want to do something else

when the value of your counter is 5:

FOR i%=1 to 10
IF i%=5
PRINT "i% is now 5"

ELSE
PRINT "i% is not 5"

ENDIF
NEXT i%

This program loops 10 times and counts in the variable i%. For each iteration

of the loop it checks if i% is 5 in the IF line. If that condition is true, i% is 5, then

it executes the program branch until the ELSE and omits the following part. If the

condition is not true, X11-Basic will only execute the part behind the ELSE. Make

sure to terminate each IF conditional with an ENDIF or X11-Basic will get lost and

produce an error message.

You may leave out the ELSE fork. X11-Basic will then do nothing if the condition

is not true.

3.11.1 Conditional and endless loops

Sometimes you don’t know how far you need to count for a special operation. Or

imagine a game. You don’t want to let it run just for 10 frames but until the player

sprite did collide or something like that. The first new loop will loop until a condition

is fulfilled:

REPEAT
...
UNTIL <condition>

This is a so-called REPEAT-UNTIL-loop. It loops at least once and checks for

the condition after the loop contents have been executed by X11-Basic. Use it for

65

3.11. FLOW CONTROL CHAPTER 3. PROGRAMMING IN X11-BASIC

things that need to be done at least once. You can emulate FOR-NEXT-loops with

it if you want trickier counting:

i%=1
REPEAT
PRINT "i%=";i%
i%=i%+1

UNTIL i%>5

Surely you can test the condition before entering a loop. This is useful if you

want to loop only when a certain condition is already true:

WHILE <condition>
...
WEND

This is the so-called WHILE-WEND loop. It checks the condition first and it will

not execute the loop body if the condition is not fulfilled. Sometimes you want to

loop endless. X11-Basic has a special loop construct for this purpose although you

can create never ending loops easily with the types above if you use a condition

that will never get true. The never ending loop is called DO-loop. The 3 loops in

the example are all equal in functionality and will loop endless.

DO
PRINT "endless"

LOOP

i%=0
REPEAT
PRINT "endless"

UNTIL i%=1

i%=0
WHILE i%=0
PRINT "endless"

WEND

At this point it is important that you know you can terminate at your X11-Basic

program at any point. This is useful if your program gets stuck in an endless loop

66

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.12. DIAGNOSTICS

which was not intended. Press CONTROL-c together and X11-Basic will stop the

program. Another CONTROL-c will quit the interpreter.

Sometimes you will want to terminate a running loop at another point than the

official loop beginning or loop end. Use the EXIT IF statement in your loop for

extra conditions. This will also terminate FOR-NEXT-loops if you wish to and it is

the only way to terminate a DO-LOOP.

i%=1
DO

PRINT "i%=";i%
EXIT IF i%=5
i%=i%+1

LOOP

Please note that the EXIT IF statement has no ENDIF or the like. It just termi-

nates the loop and continues your program behind the loop end.

3.12 Diagnostics

Some errors can be caught by the user program using the ON ERROR GOTO or

ON ERROR GOSUB command. If no error trapping routine has been supplied then

program execution is terminated and a message is printed with the corresponding

line number. The error messages are standardized. Each error message has a

corresponding number which can be referenced by the system variable ERR. A list

of standard error messages by number can be found in chapter 5.25.

67

3.13. ADDRESS SPACES CHAPTER 3. PROGRAMMING IN X11-BASIC

3.13 Address Spaces

The full accessible Program memory can be accessed by PEEK/POKE, LPEEK/LPOKE,

DPEEK/DPOKE. Be careful. You can manipulate all symbols of the interpreter and or

dynamically linked libraries and your program. Address spaces belonging to other

programs which are not shared memory blocks can not be accessed. You will get

a segmentation fault on trying this.

3.14 Graphics: Drawing and Painting

A graphics window will be automatically opened when the first graphic command

appears in your program. Without using any graphic commands no X11-Server is

needed at all and your programs also runs under a text console or as a daemon

or as CGI scripts. But if you want to draw anything with e.g. LINE, CIRCLE or

BOX, control the MOUSE pointer, the keyboard or use the graphical user interface

with e.g. ALERT or MENU, a graphic window will open with the default geometry

640x400. All graphic output can be done in full color which can be set with the

GET_COLOR() and the COLOR statements. Moreover, there can be up to 16 different

graphic windows opened at a time. Please note that all graphics is displayed after

a SHOWPAGE command only. This allows fast animations.

To allow for animated bitmap graphics and icons, X11-Basic offers the com-

mands GET and PUT, which retrieve rectangular regions from the graphics-window

into a string or put back bitmap graphics data from the string to the graphics screen

or window. The file format used with PUT is a standard .BMP bitmap, so also exter-

nally created icons can be used. Transparency and alpha channels are supported.

3.15 Reading from and Writing to Files

Before you may read from or write to a file, you need to open it; once you are

done, you should close it. Each open file is designated by a simple number, which

might be stored within a variable and must be supplied to the PRINT and INPUT
commands if you want to access the file.

If you need more control, you may consider reading and writing one byte at a

time, using the multi-purpose commands INP() and OUT, or reading the whole file

as a binary block with BLOAD.

68

CHAPTER 3. PROGRAMMING IN X11-BASIC3.16. INTERNET AND BLUETOOTH CONNECTIONS, SPECIAL FILES AND SOCKETS

3.16 Internet and bluetooth connections, special files and sock-

ets

X11-Basic allows to connect a program to another program on a different (or the

same) host computer via standard internet or bluetooth protocols or pipes.

Basically there are two methods of connections to other computers on a net-

work: A stream based connections (well known is the TCP/IP protocol for internet

connections) and a connectionless, unreliable datagram packet service (UDP, in

case of internet connections, and e.g. L2CAP for bluetooth).

Another method of passing data between two applications on the same com-

puter is using so-called pipes. Pipes are special files which are created in the local

filesystem.

3.16.1 Local inter process communication: Pipes

A pipe is a unidirectional data channel that can be used for interprocess communi-

cation. The UNIX kernel usually supports this mechanism. The pipe can be used

to send information or data from one process to another. Here is a little example

progam you can use to play with it:

PIPE #1,#2

a=FORK()

IF a=0 ! Child instance

GPRINT "Hi, I am Child !",b

DO

SHOWPAGE

LINEINPUT #1,t$

GPRINT t$

LOOP

’ This instance never ends ...

ELSE IF a=-1

PRINT "ERROR, fork() failed !"

QUIT

ELSE ! parent instance

DO

DUMP

ALERT 1,"Hi, I am Parent. Child PID="+str$(a),1," OK | Kill Child ! ",b

DUMP

PRINt #2,SYSTEM$("date")

FLUSH #2

IF b=2

SYSTEM "kill "+str$(a)

69

3.16. INTERNET AND BLUETOOTH CONNECTIONS, SPECIAL FILES AND SOCKETSCHAPTER 3. PROGRAMMING IN X11-BASIC

ALERT 1,"Child PID="+str$(a)+" killed !",1," OK ",b

QUIT

ENDIF

LOOP

ENDIF

QUIT

Instad of with pipes, the interprocess communication can also be done using

a shared memory segment. X11-Basic also supports commands for creating and

accessing such shared memory segments.

3.16.2 World-Wide communication: Sockets

Most inter-process communication uses the client server model. These terms refer

to the two processes which will be communicating with each other. One of the two

processes, the client, connects to the other process, the server, typically to make

a request for information. A good analogy is a person who makes a phone call to

another person.

Notice that the client needs to know of the existence of and the address of the

server, but the server does not need to know the address of (or even the existence

of) the client prior to the connection being established. Notice also that once a

connection is established, both sides can send and receive information.

When a socket is created, the program has to specify the address domain and

the socket type. Two processes can communicate with each other only if their

sockets are of the same type and in the same domain. There are two widely used

address domains, the (local) Unix domain, in which two processes which share

a common file system communicate, and the Internet domain, in which two pro-

cesses running on any two hosts on the Internet communicate. Each of these has

its own address format. Another domain to be mentioned is the bluetooth domain

for short range radio connections. It works similar to the internet connections, but

uses its own address space.

The address of a socket in the Unix domain is a character string which is basi-

cally an entry in the file system. It can be acced from there like a file. In X11-Basic

the normal file i/o commands can be used.

The address of a socket in the Internet domain consists of the Internet address

of the host machine (every computer on the Internet has a unique 32 bit address,

often referred to as its IP address or the bluetooth id, if we are takling about blue-

tooth connections). In addition, each socket needs a port number on that host.

Port numbers are 16 bit unsigned integers. The lower numbers are reserved in the

70

CHAPTER 3. PROGRAMMING IN X11-BASIC3.16. INTERNET AND BLUETOOTH CONNECTIONS, SPECIAL FILES AND SOCKETS

internet for standard services. For example, the port number for the FTP server

is 21. It is important that standard services be at the same port on all computers

so that clients will know their addresses. However, port numbers above 2000 are

generally available.

Socket Types There are two widely used socket types, stream sockets, and data-

gram sockets. Stream sockets treat communications as a continuous stream of

characters, while datagram sockets have to read entire messages at once. Each

uses its own communications protocol. Stream sockets for internet connections

use TCP (Transmission Control Protocol), which is a reliable, stream oriented pro-

tocol, and datagram sockets use UDP (Unix Datagram Protocol), which is unreli-

able and message oriented.

The same applies for bluetooth connections, stream sockets use the so-called

RFCOMM protocol and datagram sockets use the L2CAP protocol.

Sockets in X11-Basic can be crated with the OPEN command.

TCP/IP Transmission Control Protocol (TCP) provides a reliable byte-stream trans-

fer service between two endpoints on an internet. TCP depends on IP to move

packets around the network on its behalf. IP is inherently unreliable, so TCP pro-

tects against data loss, data corruption, packet reordering and data duplication by

adding checksums and sequence numbers to transmitted data and, on the receiv-

ing side, sending back packets that acknowledge the receipt of data.

Before sending data across the network, TCP establishes a connection with the

destination via an exchange of management packets. The connection is destroyed,

again via an exchange of management packets, when the application that was

using TCP indicates that no more data will be transferred.

TCP has a multi-stage flow-control mechanism which continuously adjusts the

sender’s data rate in an attempt to achieve maximum data throughput while avoid-

ing congestion and subsequent packet losses in the network. It also attempts to

make the best use of network resources by packing as much data as possible into

a single IP packet.

The system calls for establishing a connection are somewhat different for the

client and the server, but both involve the basic construct of a socket. A socket

is one end of an inter-process communication channel. The two processes each

establish their own socket.

The steps involved in establishing a socket on the client side are as follows:

71

3.16. INTERNET AND BLUETOOTH CONNECTIONS, SPECIAL FILES AND SOCKETSCHAPTER 3. PROGRAMMING IN X11-BASIC

1. Create a socket with the OPEN command providing a port number

OPEN "US",#1,"client",5000

2. Connect the socket to the address of the server using the CONNECT com-

mand

CONNECT #1,"ptbtime1.ptb.de",13

3. Instead of using Steps 1 and 2, you can alternatively use the combined com-

mand:

OPEN "UC",#2,"ptbtime1.ptb.de",13

4. Send and receive data. There are a number of ways to do this, but the

simplest is to use the PRINT, SEND, WRITE, READ, RECEIVE INPUT com-

mands.

PRINT #2,"GET /index.html"
FLUSH #2
WHILE INP?(#2)

LINEINPUT #2,t$
PRINT "got: ";t$

WEND

5. close the connection with

CLOSE #1

The steps involved in establishing a socket on the server side are as follows:

1. Create a socket with the OPEN command and bind the socket to a port num-

ber on the host machine.

OPEN "US",#1,"server",5000

2. Listen for connections and

3. Accept a connection with this other OPEN command, which opens a connec-

tion to the connected client:

72

CHAPTER 3. PROGRAMMING IN X11-BASIC3.16. INTERNET AND BLUETOOTH CONNECTIONS, SPECIAL FILES AND SOCKETS

OPEN "UA",#2,"",1

This call typically blocks until a client connects with the server.

4. Send and receive data on the accepted connection

PRINT #2,"Welcome to X11-Basic test-server ..."
FLUSH #2
DO

IF INP?(#2)
LINEINPUT #2,t$
PRINT "got: ";t$

ENDIF
EXIT IF t$="quit"

LOOP
PRINT #2,"goodbye..."
FLUSH #2

5. close the established connection with

CLOSE #2

and listen to the next connection (folow step 3) or

6. close the socket if not further needed.

CLOSE #1

UDP User Datagram Protocol (UDP) provides an unreliable packetized data trans-

fer service between endpoints on a network.

First, a socket has to be crated with the OPEN command:

OPEN "UU",#1,"sender",5556

When a UDP socket is created, its local and remote addresses are unspecified.

Datagrams can be sent immediately using SEND with a valid destination address

and port as argument:

SEND #1,"This is my message",CVL(CHR$(131)+CHR$(195)+CHR$(15)+CHR$(200)),5000

73

3.17. BLUETOOTH CONNECTIONS CHAPTER 3. PROGRAMMING IN X11-BASIC

UDP uses the IPv4 address format, so a long integer has to be passed.

When CONNECT is called on the socket the default destination address is set

and datagrams can now be sent using SEND without specifying an destination

address. It is still possible to send to other destinations by passing an address to

SEND.

CONNECT #1,"localhost",5555
SEND #1,"This is my message"

All receive operations return only one packet.

IF INP?(#1)
RECEIVE #1,t$,adr
PRINT "Received Message: ";t$;" from ";HEX$(adr)

ENDIF

INP?(#n) Returns the size of the next pending datagram in bytes, or 0 when no

datagram is pending.

The Socket should be closed when the connection is not going to be used any

more:

CLOSE #1

UDP does not guarantee to actually deliver the data to the destination, nor

does it guarantee that data packets will be delivered to the destination in the order

in which they were sent by the source, nor does it guarantee that only one copy

of the data will be delivered to the destination. UDP does guarantee data integrity,

and it does this by adding a checksum to the data before transmission.

3.17 Bluetooth connections

Establishing a connection between two devices with a bluetooth adapter is similar

to the internet connections. Also here you can use a stream based connection

(using RFCOMM) or a datagram based one (using L2CAP).

The X11-Basic commands for doing so are also similar. The only noticable

difference is that instead of a IP address a bluetooth id need to be used and there

is no domain name system which can be asked for the address/id of a device

knowing its name.

74

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.17. BLUETOOTH CONNECTIONS

That means, if you want to connect to a bluetooth device, you need to know its

id before. The id consists of six bytes (instead of four in case of a IPV4 internet

address). They are usually noted as a string of the format: hh:hh:hh:hh:hh:hh with

all 6 bytes in two-digit hex values separated by colons: e.g. "78:F5:FD:15:4A:3A".

You can either hardcode the id in your program, or you can scan for visible

bluetooth devices.

The scan can be done in X11-Basic with the FSFIRST$() and FSNEXT$() func-

tions:

a$=FSFIRST$("","*","b")
WHILE LEN(a$)

PRINT a$
PRINT "Adress: ";WORD$(a$,1)
PRINT "Name: ";WORD$(a$,2)
adr$=WORD$(a$,1)
a$=FSNEXT$()

WEND

RFCOMM RFCOMM (Radio frequency communication) provides a simple reliable

data stream to the user, similar to TCP.

Many Bluetooth applications use RFCOMM because of its widespread support

and publicly available API on most operating systems. Additionally, applications

that used a serial port to communicate can be quickly ported to use RFCOMM.

As with TCP/IP establishing a connection via RFCOMM involves the basic con-

struct of a socket. The two processes (server and client) each establish their own

socket.

The steps involved in establishing a socket on the client side are as follows

(assuming, that the bluetooth id you ant to connect to is in adr$):

1. Create a socket with the OPEN command providing a port number (TODO??)

2. Connect the socket to the address of the server using the CONNECT com-

mand

3. Instead of using Steps 1 and 2, you can alternatively use the combined com-

mand:

4. Send and receive data. There are a number of ways to do this, but the

simplest is to use the PRINT, SEND, WRITE, READ, RECEIVE INPUT com-

mands.

75

3.17. BLUETOOTH CONNECTIONS CHAPTER 3. PROGRAMMING IN X11-BASIC

PRINT #2,"Hello"
FLUSH #2
WHILE INP?(#2)

LINEINPUT #2,t$
PRINT "got: ";t$

WEND

5. close the connection with

CLOSE #1

The steps involved in establishing a socket on the server side are as follows:

1. Create a socket with the OPEN command and bind the socket to a port num-

ber on the host machine. (TODO: port number ????)

2. Listen for connections and

3. Accept a connection with this other OPEN command, which opens a connec-

tion to the connected client:

OPEN "UA",#2,"",1

This call typically blocks until a client connects with the server.

4. Send and receive data on the accepted connection

PRINT #2,"Welcome to X11-Basic test-server ..."
FLUSH #2
DO

IF INP?(#2)
LINEINPUT #2,t$
PRINT "got: ";t$

ENDIF
EXIT IF t$="quit"

LOOP
PRINT #2,"goodbye..."
FLUSH #2

5. close the established connection with

76

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.18. ACCESSING USB DEVICES

CLOSE #2

and listen to the next connection (folow step 3) or

6. close the socket if not further needed.

CLOSE #1

L2CAP (Logical link control and adaptation protocol)

First, a socket has to be crated with the OPEN command:

When a L2CAP socket is created, its local and remote addresses are unspec-

ified. Datagrams can be sent immediately using SEND with a valid destination

address and port as argument:

TODO.... uses the IPv4 address format, so a long integer has to be passed.

When CONNECT is called on the socket the default destination address is set

and datagrams can now be sent using SEND without specifying an destination

address. It is still possible to send to other destinations by passing an address to

SEND.

All receive operations return only one packet.

INP?(#n) Returns the size of the next pending datagram in bytes, or 0 when no

datagram is pending.

The Socket should be closed when the connection is not going to be used any

more:

CLOSE #1

The maximum packet size should not exceed 672 bytes.

Bluetooth support is work in progress and may not yet work on Android and

WINDOWS.

3.18 Accessing USB devices

X11-Basic has a builtin USB interface, which allows X11-Basic programs to access

USB-Devices, which are connected to the computer. The interface is on a near

hardware level, so the driver for the specific hardware connected must be written

in X11-Basic. Hence, it is well possible to use dataloggers and USB-to-RS232

adapters with this methods. In principle every USB-Device can be accessed, if the

protocol for data transfers and data interpretation is known.

77

3.19. DATA WITHIN THE PROGRAM CHAPTER 3. PROGRAMMING IN X11-BASIC

Please see the example program usb-VDL101T.bas for an example, how to

readout data from a VOLTCRAFT VDL101-T datalogger.

USB support is work in progress and may not yet work on Android and WIN-

DOWS.

USB-Devices are opened with the OPEN command. Instead of a filename, a

combination if PID/VID is used. Once opened, the commands CLOSE, IOCTL(),

SEND and RECEIVE can be used on that device. (PRINT and INPUT currently will

not work).

3.19 Data within the program

You may store data within your program within DATA-statements; during execution

you will probably want to READ it into variables or arrays. Also the assignment of

constant to arrays may be used to store data in your program and last but not least

the INLINE$() function may be used to store huge binary data segments.

The first example shows how to store conventional data (numbers and strings)

within the sourcecode of a basic program:

’ example how to use the DATA statement

RESTORE mydata
READ name$,age,address$,code

mydata:
DATA "Bud Spencer",30,"Holywood Street",890754
DATA "Hannelore Isendahl",15,"Max-Planck-Allee",813775

The following example shows how to store arbitrary binary data, which can be

used e.g. to store the bitmapdata for a bitmap (). Or also for other resources

like pictograms and any other bitmap or icon.

’ output of inline.bas for X11-Basic 23.04.2002
’ demo 104 Bytes.
demo$=""
demo$=demo$+"5*II@V%M@[4D=*9V,)5I@[4D=*9V,(IR?*IR=6Y*A:]OA*IS?F\.&IAI?J\D8ZII"
demo$=demo$+",*5M=;1I@V%P=;1I?F%OaJ]R=:\P,*5E?J\D>*)X,*9W,*AI>ZUE@+%X/F\R&JAV"
demo$=demo$+"A;1W&HXR&DL$"
a$=INLINE$(demo$)
PRINT len(a$),a$

’ show a bitmap

78

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.20. DYNAMIC-LINK LIBRARIES

biene$="($$43$%*<(1G,=E5Z&MD%_DVW’b*%H-^,EQ6>VTL$$$$"

CLEARW
t$=INLINE$(biene$)
COLOR GET_COLOR(65535,65535,65535)
FOR i=0 TO 40
PUT_BITMAP t$,i*16,0,16,16

NEXT i

For convenience, a program called inline.bas shippes with X11-Basic. It

does the conversion from and compression of any binary file to ready-to-use X11-

Basic sourcecode.

3.20 Dynamic-link libraries

A dynamic-link library (.so =shared object) is a collection of functions (subroutines)

that can be used by programs or by other .so’s. A .so function must be called,

directly or indirectly, from a running application and can not be run as a separate

task.

Dynamic link libraries save memory space and reduce memory swapping. Mem-

ory is saved, because many applications can use a single .so simultaneously,

sharing a single copy of the .so in memory. Another feature of .so’s is the ability

to change the functions in a .so without modifying the applications that use them,

as long as the function’s arguments and return values do not change. A disadvan-

tage to using .so’s is that an application depends on the existence of a separate

.so module. If the .so is not found, the application is terminated.

All documented functions from the shared objects of other software packages

can be used and invoked from within yout X11-Basic program.

X11-Basic will perform no check on the number and type of the API function

parameters.

3.20.1 Using shared libraries and C functions

Before an application can use a function from a .so (if you want to use your own

functions written in C you have to compile them to a shared object file), it must load

the .so explicitly using the LINK statement.

LINK #n,"myfile.so"

The process of loading a .so explicitly is called run-time linking.

79

3.20. DYNAMIC-LINK LIBRARIES CHAPTER 3. PROGRAMMING IN X11-BASIC

For instance, to use the binit() function from the trackit.so library, an

application must include following lines of code (supposing, you want to use your

own shared object made out of the c-code trackit.c):

IF NOT EXIST("./trackit.so")
SYSTEM "gcc -O3 -shared -o trackit.so trackit.c"

ENDIF
LINK #11,"./trackit.so"
~CALL(SYM_ADR(#11,"binit"),L:n,L:200,P:VARPTR(x(0)), \

P:VARPTR(bins(0)))

The file trackit.c contains:

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void binit(int n,int dn,double *x,double *data) {
int i,j;
int over=0,under=0;

for(i=0;i<n;i++) {
j=(int)((x[i]+PI)/2/PI*dn);
if(j<0) under++;
else if(j>=dn) over++;
else data[j]++;

}
}

X11-Basic applications can load up to 99 shared object files simultaneously,

although the channel number space is shared with the open files..

To do this, parameter n must specify a value between 1 an 99. X11-Basic main-

tains an internal table with 99 entries to store the handle of the loaded shared

object modules. These handles are necessary to unload the .so when the appli-

cation is finished using them.

The .so’s are unloaded by invoking the UNLINK command:

80

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.21. MEMORY MANAGEMENT

UNLINK #11

The CALL() function allows only an integer (int) type for the return value. To

get a floating point return value, use CALLD() instead. If the called function returns

a complicated data structure, use CALL$() instead.

There is currently a limitation for the use of CALL(), CALLD() and CALL$() on

64bit operating systems. Here only integer and pointer parameters are correctly

passed to the function called. If you have written the library function yourself,

you could bypass this limitation by passing a pointer to the floating point variables

instead (double *).1

The following parameter types are possible:

D: 64-bit float (double)

L: 32-bit integer (int) (%)

W: 16-bit signed (short)

B: 8-bits signed (char)

F: 4 byte float (float)

R: 8 byte long integer (long long)

P: 4 or 8 byte pointer (void *)

The Option P: behaves the same as L: on 32bit operating systems. But you

should use P: for pointers (VARPTR() etc...) into memory so that it can be trans-

lated from X11-Basic internal 32bit representation to the 64bit adresses on 64it

operating systems. The B: and W: options behave the same as the L: option.

The SYM_ADR function determines the address of the function from its name.

The spelling of the function name must therefore be identical to the spelling of the

function in the .so.

When passing the address of a string, a null byte must be added to the end of

the string.

3.21 Memory management

Normally, X11-Basic takes care of most of the memory management for the pro-

grammer. When a variable, string or array is declared, X11-Basic allocates the

1The calling mechanism depends on the Application Binary Interface, which differs for different platforms. Unfor-

tunately the AMD86x64 interface is already that complicated that there is n direct portable way to fully implement it.

The hope is, that an external library could be used in future whch provides a portable way to do it. A good candidate

would be the foreign function interface library libffi.

81

3.21. MEMORY MANAGEMENT CHAPTER 3. PROGRAMMING IN X11-BASIC

required memory and releases it when the application is terminated. However,

there may be situations when a programmer wants to allocate additional memory.

3.21.1 Allocating memory

If an application needs to store small amounts of memory, it should use strings.

Strings are often used as a buffer for functions. The address of the memory occu-

pied by a string can be obtained by the VARPTR() function. Its length by the LEN()
function.

To allocate memory from the global and system-wide program user space mem-

ory pool you might use the function MALLOC(). For instance, to allocate 2000

bytes, you might use:

ptr%=MALLOC(2000)

A global memory block allocated with MALLOC must be freed using the FREE()
function. An application should always free all memory blocks before exiting. For

instance:

FREE ptr%

3.21.2 Shared memory

Memory which has been allocated with MALLOC() can only be accessed from

within a single process. If you want two different X11-Basic instances or in general

two different running X11-Basic programs access the same memory (e.g. to share

data or to communicate with each other), you need to use shared memory instead.

The shared memory segment needs to be created and allocated first. This

should be done only by one of the programs. The creator will also select a key

(which is just an integer number) and must be known by all other programs who

want to access this memory later. For example, the key is choosen to be 4711. For

instance, to allocate 2000 bytes, you might use:

id=SHM_MALLOC(2000,4711)

Unlike MALLOC(), SHM_MALLOC() does not return an adress directly. Instead

it returns the identifier of the shared memory segment associated with key. The

82

CHAPTER 3. PROGRAMMING IN X11-BASIC 3.22. OTHER FEATURES

identifier is also just an integer number. A new shared memory segment is created

if no shared memory segment corresponding to key exists.

To get an address, which you then can use normally as all other adresses, you

need to involke the function SHM_ATTACH():

adr%=SHM_ATTACH(id)

Once the other process knows the key and the size of the shared memory

segment (or at least once it knows its id), it can attach the same segement also to

his address space. It eventually will get a different address (adr%) but writing to

the memory and reading from it will now also affect all other processes using this

shared segment.

If not used anymore, the segment should be detached from the adress space

(so that adr% cannot be used anymore) by any of the processes using it. If the

shared memory segment should be removed from memory completely (and all its

contend sould be discarded), the creator of that segment can free it with SHM_FREE.

SHM_DETACH adr%
SHM_FREE id

If not freed, the segment resists in memory until the operating system shuts

down.

3.22 Other features

• X11-Basic programs may start other programs with the commands SYSTEM
and SYSTEM$().

• The ENV$() function allows access to environment variables.

• The current time or date can be retrieved with TIME$ and DATE$.

• The interpreter allows self modifying code.

83

X11-Basic
4 GRAPHICAL USER INTERFACE

This chapter describes how to use the graphical user interface (GUI) built into X11-

Basic.

4.1 ALERT and FILESELECT

Two most often used graphic functions are implemented as a full functional graph-

ical user interface dialog: Message boxes and a file selector. Arbitrary dialogs can

be created with the object and resource functions. Also a pull down menu function

is implemented.

Fig. 4.1 shows a typical messagebox. The command which produces it is:

ALERT 3,"This file is write protected.|You can only read or \
delete it.",1,"OK|DELETE|CANCEL",sel

ALERT boxes can also be used to manage simple input forms like the one you

can see in fig. 4.2. Here is a little example program:

CLEARW
i=1
name$="TEST01"
posx$="N54°50’32.3"
posy$="E007°50’32.3"
t$="Edit waypoint:||Name: "+CHR$(27)+name$+"|"
t$=t$+"Breite: "+chr$(27)+posx$+"|"
t$=t$+"Länge: "+chr$(27)+posy$+"|"
t$=t$+"Höhe: "+chr$(27)+str$(alt,5,5)+"|"
t$=t$+"Typ: "+chr$(27)+hex$(styp,4,4)+"|"
ALERT 0,t$,1,"OK|UPDATE|LÖSCHEN|CANCEL",a,f$
WHILE LEN(f$)

Figure 4.1: A message box.

84

CHAPTER 4. GRAPHICAL USER INTERFACE 4.2. RESOURCES

Figure 4.2: A simple input box.

WORT_SEP f$,CHR$(13),0,a$,f$
PRINT "Feld";i;": ",a$
INC i

WEND
QUIT

Fig. 4.4 shows the fileselector box. The command which produces it is:

FILESELECT "load program:","./*.bas","in.bas",f$

The complete path and filename of the selected file will be returned in f$.

4.2 Resources

X11-Basic resources consist of object trees, strings, and bitmaps used by a basic

program. They encapsulate the user interface and make internationalization easier

by placing all program strings in a single file. The data format of X11Basic resource

is downwards compatible with the Atari-ST GEM implementation.

Resources are generally created using a Resource Construction Set (RCS) and

saved to a .RSC file which is loaded by RSRC_LOAD() at program initialization time.

Resources may also be embedded as data structures in source code (the utility

programs rsc2gui.bas and gui2bas.bas convert .RSC files to source code).

Resources contain pointers and coordinates which must be fixed up before being

used. RSRC_LOAD() does this automatically, however if you use an embedded

resource you must take care of this by yourself on each object in each object tree

to convert the initial character coordinates of to screen coordinates. This allows

resources designed on screens with different aspect ratios and system fonts to

appear the same. Once a resource is loaded use rsrc_gaddr() to obtain pointers

85

4.2. RESOURCES CHAPTER 4. GRAPHICAL USER INTERFACE

Figure 4.3: The fileselecetor

Figure 4.4: A pull down menu

86

CHAPTER 4. GRAPHICAL USER INTERFACE 4.2. RESOURCES

Figure 4.5: Examples of forms in X11-Basic

to individual object trees which can then be manipulated directly or with the X11-

Basic built-in functions.

4.2.1 Objects

Objects can be boxes, buttons, text, images, and more. An object tree is an array

of OBJECT structures linked to form a structured relationship to each other. The

object itself is a section of data which can be held by a string in X11-Basic.

The OBJECT structure is format is as follows:

object$=MKI$(ob_next)+MKI$(ob_head)+MKI$(ob_tail)+
MKI$(ob_type)+MKI$(ob_flags)+MKI$(ob_state)+
MKL$(ob_spec)+MKI$(ob_x)+MKI$(ob_y)+MKI$(ob_width)+
MKI$(ob_height)

An Object tree is a collection of objects:

tree$=object0$+object1$+ ... +objectn$

87

4.2. RESOURCES CHAPTER 4. GRAPHICAL USER INTERFACE

The first object in an OBJECT tree is called the ROOT object (OBJECT 0).

It’s coordinates are relative to the upper-left hand corner of the graphics win-

dow. The ROOT object can have any number of children and each child can

have children of their own. In each case, the OBJECT’s coordinates, ob_x, ob_y,

ob_width, and ob_height are relative to that of its parent. The X11-Basic function

objc_offset() can, however, be used to determine the exact screen coordinates

of a child object. objc_find() is used to determine the object at a given screen

coordinate.

The ob_next, ob_head, and ob_tail fields determine this relationship be-

tween parent OBJECTs and child OBJECTs.

ob_next the index (counting objects from the first object in the object tree) of the

object’s next sibling at the same level in the object tree array. The ROOT

object should set this value to -1. The last child at any given nesting level

should set this to the index of its parent.

ob_head the index of the first child of the current object. If the object has no

children then this value should be -1.

ob_tail the index of the last child: the tail of the list of the object’s children in the

object tree array If the object has no children then this value should be -1.

ob_type the object type. The low byte of the ob_type field specifies the object

type as follows:

ob_type Name Description

20 G_BOX Box

21 G_TEXT Formatted Text

22 G_BOXTEXT Formatted Text in a Box

23 G_IMAGE Monochrome Image

24 G_PROGDEF Programmer-Defined Object

25 G_IBOX Invisible Box

26 G_BUTTON Push Button w/String

27 G_BOXCHAR Character in a Box

28 G_STRING Un-formatted Text

29 G_FTEXT Editable Formatted Text

30 G_FBOXTEXT Editable Formatted Text in a Box

31 G_ICON Monochrome Icon

32 G_TITLE Menu Title

33 G_CICON Color Icon

88

CHAPTER 4. GRAPHICAL USER INTERFACE 4.2. RESOURCES

ob_flags The ob_flags field of the object structure is a bitmask of different flags

that can be applied to any object. You may want to apply one ore more flags

at once. Just add the values ob_flags.

ob_flags Name Description

0 NONE No flag

1 SELECTABLE object is selected. state may be toggled by clicking

on it with the mouse.

2 DEFAULT An EXIT object with this bit set will have a thicker

outline and be triggered when the user presses re-

turn.

4 EXIT Clicking on this OBJECT and releasing the mouse

button while still over it will cause the dialog to exit.

8 EDITABLE Set for FTEXT and FBOXTEXT objects to indicate

that they may receive edit focus.

16 RBUTTON This object is one of a group of radio buttons. Click-

ing on it will deselect any selected objects at the

same tree level that also have the RBUTTON flag

set. Likewise, it will be deselected automatically

when any other object is selected.

32 LASTOB This flag signals that the current OBJECT is the last

in the object tree. (Required!)

64 TOUCHEXIT Setting this flag causes the OBJECT to return an

exit state immediately after being clicked on with the

mouse.

256 HIDETREE This OBJECT and all of its children will not be

drawn.

512 INDIRECT This flag cause the ob_spec field to be interpreted

as a pointer to the ob_spec value rather than the

value itself.

1024 FL3DIND Setting this flag causes the OBJECT to be drawn

as a 3D indicator. This is appropriate for radio and

toggle buttons.

2048 FL3DACT Setting this flag causes the OBJECT to be drawn as

a 3D activator. This is appropriate for EXIT buttons.

89

4.2. RESOURCES CHAPTER 4. GRAPHICAL USER INTERFACE

3072 FL3DBAK If these bits are set, the object is treated as an AES

background object. If it is OUTLINED, the outlined

is drawn in a 3D manner. If its color is set to WHITE

and its fill pattern is set to 0 then the OBJECT will

inherit the default 3D background color.

4096 SUBMENU This bit is set on menu items which have a sub-

menu attachment. This bit also indicates that the

high byte of the ob_type field is being used by the

menu system.

ob_state The ob_state field determines the display state of the object as follows:

ob_state Name Description

0 NORMAL Normal state

1 SELECTED The object is selected. An object with this bit set

will be drawn in inverse video except for G_CICON

which will use its ’selected’ image.

2 CROSSED An OBJECT with this bit set will be drawn over with

a white cross (this state can only usually be seen

over a colored or SELECTED object).

4 CHECKED An OBJECT with this bit set will be displayed with a

check mark in its upper-left corner.

8 DISABLED An OBJECT with this bit set will ignore user input.

Text objects with this bit set will draw in grey or a

dithered pattern.

16 OUTLINED G_BOX, G_IBOX, G_BOXTEXT, G_FBOXTEXT,

and G_BOXCHAR OBJECTs with this bit set will be

drawn with a double border.

32 SHADOWED G_BOX, G_IBOX, G_BOXTEXT, G_FBOXTEXT,

and G_BOXCHAR OBJECTs will be drawn with a

shadow.

ob_spec The object-specific field

90

CHAPTER 4. GRAPHICAL USER INTERFACE 4.2. RESOURCES

The ob_spec field contains different data depending on the object type as

indicated in the table below:

G_BOX The low 16 bits contain a WORD containing color

information for the OBJECT. Bits 23-16 contain a

signed BYTE representing the border thickness of

the box.

G_TEXT The ob_spec field contains a pointer to a TEDINFO

structure.

G_BOXTEXT The ob_spec field contains a pointer to a TEDINFO

structure.

G_IMAGE The ob_spec field points to a BITBLK structure.

G_PROGDEF The ob_spec field points to a APPLBLK structure.

G_IBOX The low 16 bits contain a WORD containing color

information for the OBJECT. Bits 23-16 contain a

signed BYTE representing the border thickness of

the box.

G_BUTTON The ob_spec field contains a pointer to the text to

be contained in the button.

G_BOXCHAR The low 16 bits contain a WORD containing color

information for the OBJECT. Bits 23-16 contain a

signed BYTE representing the border thickness of

the box. Bits 31-24 contain the ASCII value of the

character to display.

G_STRING The ob_spec field contains a pointer to the text to

be displayed.

G_FTEXT The ob_spec field contains a pointer to a TEDINFO

structure.

G_FBOXTEXT The ob_spec field contains a pointer to a TEDINFO

structure.

G_ICON The ob_spec field contains a pointer to an ICON-

BLK structure.

G_TITLE The ob_spec field contains a pointer to the text to

be used for the title.

G_CICON The ob_spec field contains a pointer to a CICON-

BLK structure.

91

4.2. RESOURCES CHAPTER 4. GRAPHICAL USER INTERFACE

objc_colorword Almost all objects reference a WORD containing the object

color as defined below.

objc_colorword=bbbbcccctpppcccc

Bits 15-12 contain the border color
Bits 11-8 contain the text color
Bit 7 is 1 if opaque or 0 if transparent
Bits 6-4 contain the fill pattern index
Bits 3-0 contain the fill color

Available colors for fill patterns, text, and borders are listed below:

Value Name Color

0 WHITE White

1 BLACK Black

2 RED Red

3 GREEN Green

4 BLUE Blue

5 CYAN Cyan

6 YELLOW Yellow

7 MAGENTA Magenta

8 LWHITE Light Gray

9 LBLACK Dark Gray

10 LRED Light Red

11 LGREEN Light Green

12 LBLUE Light Blue

13 LCYAN Light Cyan

14 LYELLOW Light Yellow

15 LMAGENTA Light Magenta

TEDINFO G_TEXT, G_BOXTEXT, G_FTEXT, and G_FBOXTEXT objects all
reference a TEDINFO structure in their ob_spec field. The TEDINFO
structure is defined below:

tedinfo$=MKL$(VARPTR(te_ptext$))+MKL$(VARPTR(te_ptmplt$))+

MKL$(VARPTR(te_pvalid$))+MKI$(te_font)+MKI$(te_fontid)+

MKI$(te_just)+MKI$(te_color)+MKI$(te_fontsize)+

MKI$(te_thickness)+MKI$(te_txtlen)+MKI$(te_tmplen)

92

CHAPTER 4. GRAPHICAL USER INTERFACE 4.2. RESOURCES

The three character pointers point to text strings required for G_FTEXT
and G_FBOXTEXT objects. te_ptext points to the actual text to be dis-

played and is the only field used by all text objects. te_ptmplt points to

the text template for editable fields. For each character that the user

can enter, the text string should contain a tilde character (ASCII 126).

Other characters are displayed but cannot be overwritten by the user.

te_pvalid contains validation characters for each character the user

may enter. The current acceptable validation characters are:

Char Allows

9 Digits 0-9

A Uppercase letters A-Z plus space

a Upper and lowercase letters plus space

N Digits 0-9, uppercase letters A-Z and space

n Digits 0-9, upper and lowercase letters A-Z and space

F Valid DOS filename characters plus question mark and asterisk

P Valid DOS pathname characters, backslash, colon,

question mark, asterisk

p Valid DOS pathname characters, backslash and colon

X All characters

te_font may be set to any of the following values:

te_font Name Description

3 IBM Use the standard monospaced font.

5 SMALL Use the small monospaced font.

te_just sets the justification of the text output as follows:

te_just Name Description

0 TE_LEFT Left Justify

1 TE_RIGHT Right Justify

2 TE_CNTR Center

te_thickness sets the border thickness (positive and negative values are

acceptable) of the G_BOXTEXT or G_FBOXTEXT object.

te_txtlen and te_tmplen should be set to the length of the starting text

and template length respectively.

93

4.2. RESOURCES CHAPTER 4. GRAPHICAL USER INTERFACE

BITBLK G_IMAGE objects contain a pointer to a BITBLK structure in their

ob_spec field. The BITBLK structure is defined as follows:

bitblk$=MKL$(VARPTR(bi_pdata$))+MKI$(bi_wb)+MKI$(bi_hl)+

MKI$(bi_x)+MKI$(bi_y)+MKI$(bi_color)

bi_pdata should contain a monochrome bit image. bi_wb specifies the

width (in bytes) of the image. All BITBLK images must be a multiple of 16

pixels wide therefore this value must be even. bi_hl specifies the height

of the image in scan lines (rows). bi_x and bi_y are used as offsets into

bi_pdata. Any data occurring before these coordinates will be ignored.

bi_color is a standard color WORD where the fill color specifies the

color in which the image will be rendered.

ICONBLK The ob_spec field of G_ICON objects point to an ICONBLK struc-

ture as defined below:

iconblk$=MKL$(VARPTR(ib_pmask$))+MKL$(VARPTR(ib_pdata$))+MKL$(VARPTR(ib_ptext$))+

MKI$(ib_char)+MKI$(ib_xchar)+MKI$(ib_ychar)+

MKI$(ib_xicon)+MKI$(ib_yicon)+MKI$(ib_wicon)+MKI$(ib_hicon)+

MKI$(ib_xtext)+MKI$(ib_ytext)+MKI$(ib_wtext)+MKI$(ib_htext)

ib_pmask and ib_pdata contain the monochrome mask and image

data respectively. ib_ptext is a string pointer to the icon text. ib_char
defines the icon character (used for drive icons) and the icon foreground

and background color as follows:

| ib_char |

| Bits 15-12 | Bits 11-8 | Bits 7-0 |

|Icon Foreground Color |Icon Background Color |ASCII Character (or 0 |

| | | for no character). |

ib_xchar and ib_ychar specify the location of the icon character rela-

tive to ib_xicon and ib_yicon. ib_xicon and ib_yicon specify the

location of the icon relative to the ob_x and ob_y of the object. ib_wicon
and ib_hicon specify the width and height of the icon in pixels. As

with images, icons must be a multiple of 16 pixels in width. ib_xtext
and ib_ytext specify the location of the text string relative to the ob_x
and ob_y of the object. ib_wtext and ib_htext specify the width and

height of the icon text area.

CICONBLK The G_CICON object defines its ob_spec field to be a pointer to

a CICONBLK structure as defined below:

ciconblk$=monoblk$+MKL$(VARPTR(mainlist$))

94

CHAPTER 4. GRAPHICAL USER INTERFACE 4.2. RESOURCES

monoblk contains a monochrome icon which is rendered if a color icon

matching the display parameters cannot be found. In addition, the icon

text, character, size, and positioning data from the monochrome icon

are always used for the color one. mainlist contains the first CICON

structure in a linked list of color icons for different resolutions. CICON is

defined as follows:

cicon$=MKI$(num_planes)+MKL$(VARPTR(col_data$))+MKL$(VARPTR(col_mask$))+

MKL$(VARPTR(sel_data$))+MKL$(VARPTR(sel_mask$))+

MKL$(VARPTR(cicon2$))

num_planes indicates the number of bit planes this color icon contains.

col_data and col_mask contain the icon data and mask for the unse-

lected icon respectively. Likewise, sel_data and sel_mask contain the

icon data and mask for the selected icon. cicon2$ contains the next

color icon definition. Use MKL$(0) if no more are available.

The GUI library searches the CICONBLK object for a color icon that has

the same number of planes in the display. If none is found, the GUI

library simply uses the monochrome icon.

APPLBLK G_PROGDEF objects allow programmers to define custom objects

and link them transparently in the resource. The ob_spec field of G_PROGDEF
objects contains a pointer to an APPLBLK as defined below:

applblk$=MKL$(SYM_ADR(#1,"function"))+MKL$(ap_parm)

The first is a pointer to a user-defined routine which will draw the ob-

ject. This routine must be a c-Function, which has to be linked to X11-

basic with the LINK command. The routine will be passed a pointer to

a PARMBLK structure containing the information it needs to render the

object. The routine must be defined with stack checking off and expect to

be passed its parameter on the stack. ap_parm is a user-defined value

which is copied into the PARMBLK structure as defined below:

typedef struct parm_blk {

OBJECT *tree;

short pb_obj;

short pb_prevstate;

short pb_currstate;

short pb_x;

short pb_y;

short pb_w;

short pb_h;

short pb_xc;

95

4.2. RESOURCES CHAPTER 4. GRAPHICAL USER INTERFACE

short pb_yc;

short pb_wc;

short pb_hc;

long pb_parm;

} PARMBLK;

tree points to the OBJECT tree of the object being drawn. The object is

located at index pb_obj.

The routine is passed the old ob_state of the object in pb_prevstate
and the new ob_state of the object in pb_currstate. If pb_prevstate
and pb_currstate is equal then the object should be drawn completely,

otherwise only the drawing necessary to redraw the object from pb_prevstate
to pb_currstate are necessary.

pb_x, pb_y, pb_w, and pb_h give the screen coordinates of the object.

pb_xc, pb_yc, pb_wc, and pb_hc give the rectangle to clip to. pb_parm
contains a copy of the ap_parm value in the APPLBLK structure. The

custom routine should return a short containing any remaining ob_state
bits you wish the GUI Library to draw over your custom object.

Dialogs

Dialog boxes are modal forms of user input. This means that no other interaction

can occur between the user and applications until the requirements of the dialog

have been met and it is exited. A normal dialog box consists of an object tree with

a BOX as its root object and any number of other controls that accept user input.

Both alert boxes and the file selector are examples of dialog boxes.

The form_do() function performs the simplest method of using a dialog box.

Simply construct an OBJECT tree with at least one EXIT or TOUCHEXIT object

and call form_do()1. All interaction with the dialog like editable fields, radio but-

tons, and selectable objects will be maintained by the X11-Basic library until the

user strikes an EXIT or TOUCHEXIT object.

4.2.2 The gui file format

The *.gui file format, which is basically an ASCII representation of the ATARI ST

resource files (*.rsc), can be converted to X11-Basic code, which then can handle

1Before you should display the dialog box using the objc_draw() function. Maybe you also want to center the

dialog with form_center() and save and redraw the background with form_dial().

96

CHAPTER 4. GRAPHICAL USER INTERFACE 4.2. RESOURCES

message boxes and forms. The converter gui2bas(1) does this job. For conver-

sion of ATARI ST resource files to *.gui Files see rsc2gui(1).

The *.gui file consists of Lines and Blocks which specify objects and their hier-

archical dependencies. The generic format of such an object is:

label: TYPE(variables) {
... block ...
}

The label is optional and gives the object a name. Depending on TYPE of the

object, one or more variables are given as a comma separated list in brackets.

Each object may start a block with ’{’ at the end of the line. Inside this block there

might be one or more objects given which then are considered as sub-objects of

the one which opened the block. The block will be closed by a ’}’ in a single line.

Example:

’ Little selector box (c) Markus Hoffmann 07.2003
’ convert this with gui2bas !
’ as an example for the use of the gui system
’ with X11-Basic

BOX(X=0,Y=0,W=74,H=14, FRAME=2, FRAMECOL=1, TEXTCOL=1, BGCOL=0, PATTERN=0, TEXTMODE=0,
STATE=OUTLINED+) {

BOXTEXT(X=2,Y=1,W=70,H=1, TEXT="Select option ...", FONT=3, JUST=2, COLOR=4513,
BORDER=253, STATE=SHADOWED+)

BOX(X=2,Y=3,W=60,H=10, FRAME=-1, FRAMECOL=1, TEXTCOL=1, BGCOL=0, PATTERN=0,
TEXTMODE=0) {

FTEXT(X=1,Y=1,W=30,H=1,COLOR=4513,FONT=3,BORDER=1,TEXT="Line 1",
PTMP="_______________________________________",
PVALID="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", FLAGS=EDITABLE)

FTEXT(X=1,Y=2,W=30,H=1,COLOR=4513,FONT=3,BORDER=1,TEXT="",
PTMP="_______________________________________",
PVALID="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", FLAGS=EDITABLE)

FTEXT(X=1,Y=3,W=30,H=1,COLOR=4513,FONT=3,BORDER=1,TEXT="",
PTMP="_______________________________________",
PVALID="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", FLAGS=EDITABLE)

FTEXT(X=1,Y=4,W=30,H=1,COLOR=4513,FONT=3,BORDER=1,TEXT="",
PTMP="_______________________________________",
PVALID="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", FLAGS=EDITABLE)

BOX(X=2,Y=6,W=50,H=3, FRAME=-1, FRAMECOL=1, TEXTCOL=1, BGCOL=1, PATTERN=5,
TEXTMODE=0) {

BUTTON(X=2,Y=1,W=4,H=1, TEXT="ON",STATE=SELECTED,
FLAGS=RADIOBUTTON+SELECTABLE,FRAME=2, FRAMECOL=1, TEXTCOL=1,
BGCOL=1, PATTERN=0, TEXTMODE=0)

BUTTON(X=8,Y=1,W=4,H=1, TEXT="OFF",FLAGS=RADIOBUTTON+SELECTABLE,FRAME=2,
FRAMECOL=1, TEXTCOL=1, BGCOL=1, PATTERN=0, TEXTMODE=0)

}
}

97

4.3. MENUS CHAPTER 4. GRAPHICAL USER INTERFACE

ok: BUTTON(X=65,Y=4,W=7,H=4, TEXT="OK", FLAGS=SELECTABLE+DEFAULT+EXIT)
cancel: BUTTON(X=65,Y=9,W=7,H=4, TEXT="CANCEL", FLAGS=SELECTABLE+EXIT+LASTOB+)

}

4.3 Menus

Most applications use a menu bar to allow the user to navigate through program

options.

Here is a simple example program, which demonstrates the handling of a drop

down menu.

’ Test-program for Drop-Down-Menus
’
DIM field$(50)
FOR i=0 TO 50
READ field$(i)
EXIT IF field$(i)="***"

NEXT i
oh=0
field$(i)=""
DATA "INFO"," Menutest"
DATA "---------------"
DATA "- Access.1","- Access.2","- Access.3","- Access.4","- Access.5"
DATA "- Access.6",""
DATA "FILE"," new"," open ..."," save"," save as ...","--------------"
DATA " print","--------------"," Quit",""
DATA "EDIT"," cut"," copy"," paste","----------"," help1"," helper"
DATA " assist",""
DATA "HELP"," online help","--------------"," edifac"," editor"," edilink"
DATA " edouard",""
DATA "***"

grau=GET_COLOR(32000,32000,32000)
COLOR grau
PBOX 0,0,640,400
MENUDEF field$(),menuaction
DO
PAUSE 0.05
MENU

LOOP
QUIT

PROCEDURE menuaction(k)
LOCAL b
IF (field$(k)=" Quit") OR (field$(k)=" exit")
QUIT

ELSE IF field$(k)=" online help"
oh=not oh
MENUSET k,4*abs(oh)

ELSE IF field$(k)=" Menutest"
~FORM_ALERT(1,"[0][- Menutest -||(c) Markus Hoffmann 2001|X11-Basic V.1.03][OK]")

ELSE
PRINT "MENU selected ";k;" contents: ";field$(k)
b=FORM_ALERT(1,"[1][--- Menutest ---||You selected item (No. "+str$(k)+ \

"),| for which was no|function defined !][OK |disable]")

98

CHAPTER 4. GRAPHICAL USER INTERFACE 4.3. MENUS

IF b=2
MENUSET k,8

ENDIF
ENDIF

RETURN

99

X11-Basic
5 QUICK REFERENCE

5.1 Reserved variable names

There are some reserved variables. Some Keywords may not work as variable

names as well. Although there is no checking done, parsing errors could occur.

Please try the command LET in such cases. In general, as long as an ending of a

variable name is different from any command or keyword, it’s usable as name.

Reserved and system variables are:

int ANDROID? -1 on Android systems, else 0 p.141

int COLS number of columns of the text terminal p.201

int CRSCOL text cursor position: current column p.212

int CRSLIN text cursor position: current line p.212

flt CTIMER CPU system timer (seconds) p.213

int ERR number of the last error p.264

int FALSE constant: 0 p.285

int GPS? TRUE if GPS is available, else 0 p.337

flt GPS_ALT Altitude in m received from GPS p.338

flt GPS_LAT latitude in degrees received from GPS p.338

flt GPS_LON longitude in degrees received from GPS p.339

int MOUSEK mouse button state p.427

int MOUSES state of the shift, alt, ctrl, caps keys p.427

int MOUSEX x coordinate of mouse position p.427

int MOUSEY y coordinate of mouse position p.427

int PC program counter p.467

flt PI constant: 3.14159265359... p.471

int ROWS number of rows of the text terminal p.542

int SENSOR? TRUE if sensor phalanx is available p.560

int SP internal stack pointer p.589

int STIMER integer system timer p.598

flt TIMER Unix system timer, float p.619

int TRUE constant: -1 p.627

int UNIX? TRUE if OS is UNIX like (Linux, BSD) p.634

int WIN32? TRUE if OS is MS WINDOWS 32 bit p.660

DATE$ current date p.221

100

CHAPTER 5. QUICK REFERENCE 5.2. CONDITIONS

FILEEVENT$ get events about files p.290

INKEY$ content of the keyboard-buffer p.357

TERMINALNAME$ device name of the standard terminal p.616

TIME$ current time p.618

TRACE$ current program code line p.623

5.2 Conditions

Conditions and expression are the same, FALSE is defined as 0 and TRUE as -1. As

a consequence, Boolean operators like AND, OR, XOR etc. are applied as a bitwise

operation. This way they can be used in expressions as well as in conditions.

5.3 Numbers and Constants

Number constants may precede 0x to represent hex values. String constants are

marked with pairs of "". Array constants have following format: [, , ; , , ; , ,].

5.4 Operators

Precedence is defined as follows (highest first):

0. () (brackets)

1. ^ (power)

2. * / (multiplication, division)

3. \ (modulo)

4. - + ()

5. MOD DIV (modulus, ...) p.421,240

6. < > = <> <= >= (comparison operators)

7. AND OR XOR NOT EQV IMP (logical operators)p.140,461, 444,262,354

101

5.5. ABBREVIATIONS CHAPTER 5. QUICK REFERENCE

5.5 Abbreviations

In direct mode in the interpreter every command can be abbreviated as long as the

command parser can identify uniquely the command. So you may use q instead of

QUIT.

In addition there are abbreviations which are actually alternate commands like:

’ REM p.521

? PRINT p.489

@ GOSUB p.328

~ VOID p.651

! comment at the end of a line

& EVAL / indirect command p.267

5.6 Interpreter Commands

CLEAR clear and remove all variables p.192

CONT continue (after STOP) p.206

DUMP lists all used variable names p.246

DUMP "@" list of functions and procedures p.246

DUMP ":" list of all labels p.246

DUMP "#" list of open files p.246

DUMP "K" list of implemented commands p.246

DUMP "F" list of internal functions p.246

ECHO ON/OFF same as TRON * TROFF p.248

EDIT call default editor to edit program p.249

HELP <expr> prints short help on expr p.345

LIST [s,e] List program code (from line s to e) p.388

LOAD file$ load program p.390

NEW clear all variables, erase program and stop p.437

PLIST formatted listing p.475

PROGRAM options set title and compiler options p.496

QUIT quits the X11-BASIC-Interpreter p.504

REM comment remark in program p.521

RUN start program p.545

STOP stop program p.599

102

CHAPTER 5. QUICK REFERENCE 5.7. FLOW CONTROL COMMANDS

SAVE [file$] writes the BASIC-program into file p.547

TROFF Trace mode off p.625

TRON Trace mode on (for debugging) p.626

VERSION shows X11-Basic version number and date p.650

XLOAD select and load a program p.666

XRUN select, load and run a program p.669

5.7 Flow Control Commands

AFTER n,procedure execute procedure after n seconds p.135

BREAK same as EXIT IF TRUE p.167

CASE const SELECT * CASE * DEFAULT * ENDSELECT p.181

CHAIN bas$ executes another basic program p.184

CONTINUE SELECT * CASE * CONTINUE * ENDSELECT p.206

DEFAULT SELECT * CASE * DEFAULT * ENDSELECT p.225

DEFFN define function macro. p.227

DO * LOOP (endless) loop without condition p.241

DOWNTO FOR ... DOWNTO p.242

ELSE see IF * ELSE * ENDIF p.251

ELSE IF see IF * ELSE * ENDIF p.251

END program end, enter interactive mode p.255

ENDFUNCTION FUNCTION * ENDFUNCTION p.256

ENDIF IF * ELSE * ENDIF p.257

ENDSELECT SELECT * CASE * DEFAULT * ENDSELECT p.259

EVERY n,procedure invokes procedure every n seconds p.273

EXIT IF a exit loop if condition a is TRUE p.280

FOR * NEXT For Next loop p.299

FUNCTION * ENDFUNC define function p.314

GOSUB proc(...) call subroutine p.328

GOTO label goto label p.329

IF * ELSE * ENDIF conditional blocks p.352

LOOP DO * LOOP p.398

NEXT FOR * NEXT p.438

ON BREAK GOSUB proc define procedure on break p.454

103

5.8. CONSOLE INPUT/OUTPUT COMMANDS CHAPTER 5. QUICK REFERENCE

ON ERROR GOSUB proc define procedure on error p.454

ON * GOSUB proc1,... excecute subroutine depending on value p.453

ON * GOTO label1,... branch to different labels depending on value p.453

REPEAT REPEAT * UNTIL p.523

RESUME resume program after error p.526

RETURN define the end of a PROCEDURE p.528

SELECT expr SELECT * CASE * DEFAULT * ENDSELECT p.555

UNTIL exp REPEAT * UNTIL p.638

SPAWN procedure Spawn new thread p.591

5.8 Console Input/Output Commands

BEEP Beep (on TTY/console) p.159

BELL same as BEEP p.159

CLS clear (text)screen p.198

FLUSH flush output p.298

HOME textcursor home p.349

INPUT "text";varlist read values for variables p.362

LINEINPUT t$ read entire line from channel/file/console p.385

LOCATE row,column Place cursor on column and row p.393

PRINT a;b$ console output p.489

PRINT AT(x,y); locate textcursor at row y and column x p.490

PRINT COLOR(x,y); change text color p.491

PRINT TAB(x); locate textcursor at column x p.??

PRINT SPC(x); move textcursor x columns p.??

PRINT a USING f$ print number with formatter p.493

PUTBACK a put back a char to console p.501

5.9 File Input/Output Commands

BGET #f,a,n read n bytes from file #f to address a p.160

BLOAD f$,a[,l] reads entire file (given by name) to address a p.162

104

CHAPTER 5. QUICK REFERENCE 5.10. VARIABLE MANIPULATION COMMANDS

BPUT #f,a,n writes n bytes from address a to file/channel f p.166

BSAVE f$,a,l saves l bytes in memory at address a to file f$ p.169

CHDIR path$ change current working directory p.185

CHMOD file$,m change file permissions p.186

CLOSE [[#]n] close file, I/O channel or link p.195

FLUSH [#n] flush output p.298

KILL file$ delete a file p.376

MAP maps a file into memory p.??

UNMAP unmaps memory p.637

MKDIR path$ create a directory p.419

OPEN m$,#n,file$ open a file or socket for input and/or output p.456

OUT #n,a out byte a to channel n p.462

PRINT #n; output to channel/file p.489

PUTBACK [#n,]a put back a char to channel/file/console p.501

RELSEEK #n,d Place filepointer on new relative position p.520

RENAME file$,dst$ rename and move a file p.522

RMDIR path$ remove an empty directory p.535

SEEK #n,d place filepointer to absolute position p.554

TOUCH #n update timestamps of file p.622

WATCH file$ monitor file changes p.655

5.10 Variable Manipulation Commands

ABSOLUTE x,adr% Assigns the address to the variable x. p.129

ARRAYCOPY dst(),src() copies array including dimensioning p.146

ARRAYFILL a(),b fills array with value p.146

CLR a,b,c(),f$ clear variables; same as a=0;b=0;c()=[];f$=""p.197

DEC var decrement variable; same as var=var-1 p.222

DIM declare and create array p.237

ERASE a()[,...] erase arrays p.263

INC a increments variable a p.355

LET a=b enforces assignment p.382

LOCAL var[,...] declare local variables in a procedure or functionp.392

SORT a(),n[,b()] Sort array p.585

105

5.11. MEMORY MANIPULATION COMMANDS CHAPTER 5. QUICK REFERENCE

SWAP a,b Swap variables p.607

VAR vars declare arguments to be passed "by reference" p.646

5.11 Memory Manipulation Commands

ABSOLUTE x,adr% Assigns the address to the variable x. p.129

BMOVE q,z,n copies a block of n bytes from address q to z p.163

DPOKE adr,word write short int word to adr p.243

FREE adr% Frees a previously allocated memory block. p.307

LPOKE adr,long writes long int value to pointer adr p.401

MFREE adr% Frees a previously allocated memory block. p.416

MSYNC adr%,l flushes changes map memory back to disk p.431

POKE adr,byte write byte to pointer adr p.480

SHM_DETACH adr% detaches the shared memory segment p.571

SHM_FREE adr% frees the shared memory segment p.572

5.12 Math commands

ADD a,b same as a=a+b but faster p.133

DEC var same as var=var-1 but faster p.222

DIV a,b same as a=a/b but faster p.240

FFT a(),i fast fourier transformation on 1D array. p.288

FIT x(),y()[,yerr()],n,func(x,a,b,c,...)
fits function to data p.293

FIT_LINEAR x(),y()[,[xerr(),]yerr()],n,a,b[,siga,sigb,chi2,q]
linear regression with errors p.294

FIT_POLY x(),y(),dy(),n%,a(),m%
fit a polynom to datapoints p.295

INC var same as var=var+1 but faster p.355

MUL a,b same as a=a*b but faster p.434

SORT a(),n[,b()] sorts n values of a() to incrementing order p.585

SUB a,b same as a=a-b but faster p.602

106

CHAPTER 5. QUICK REFERENCE 5.13. OTHER COMMANDS

5.13 Other Commands

CALL adr[,par,...] see EXEC p.177

CONNECT #n,t$[,i%] connect a channel p.205

DATA 1,"Hallo",... define constants p.220

DELAY sec same as PAUSE p.234

ERROR n execute error number n p.266

EVAL t$ execute X11-Basic command contained in t$ p.267

EXEC adr[,var,...] call a C subroutine at pointer adr. p.276

GET_LOCATION ,,,,,,, returns the position of the device p.323

GPS ON/OFF turns GPS device on/off p.336

LINK #n,t$ load shared object file t$ p.387

UNLINK #n unload shared object file p.636

MERGE f$ Merges bas-file to actual program code p.414

NOP no operation do nothing p.441

NOOP no operation do nothing p.441

PAUSE sec pauses sec seconds p.465

PIPE #l,#k links two file channels p.472

PLAYSOUND c,s$ plays a WAV sample p.473

PLAYSOUNDFILE file$ plays a sound file p.474

PROCEDURE proc(p1,...) PROCEDURE * RETURN p.494

RANDOMIZE [seed] Sets seed for random generator p.512

READ var reads constant from DATA statement p.514

RECEIVE #n,t$ receive a message from a socket p.517

RESTORE [label] (re)sets pointer for READ-statement to label p.525

RETURN expr return value from FUNCTION p.528

RSRC_LOAD file$ loads GEM rsc-File (ATARI ST) p.544

RSRC_FREE frees GEM rsc-File p.543

SEND #n,t$ send a message to a socket p.557

SENSOR ON/OFF turns SENSORs on/off p.561

SETENV t$=a$ Sets environmentvar t$ using value a$ p.562

SOUND freq Sound the internal speaker p.587

SPLIT t$,d$,mode,a$,b$ splits t$ by deliminator d$ into a$ and b$ p.594

107

5.14. GRAPHIC COMMANDS CHAPTER 5. QUICK REFERENCE

SHELL t$ execute file as shell p.568

SPEAK t$ Text to speach p.592

SYSTEM t$ execute shell with command t$ p.610

UNLINK #n un-links shared object #n p.636

VOID a calculates expression a and discard result p.651

WAVE c,f, control the sound synthesizer p.656

WORT_SEP same as SPLIT p.664

5.14 Graphic commands

5.14.1 Drawing and painting

BOUNDARY f switch borders on or off p.164

BOX x1,y1,x2,y2 draw a frame p.165

CIRCLE x,y,r,, draw a circle p.191

CLIP ,,,,, clipping function p.194

COLOR f[,b] Set foreground color (and background color) p.199

COPYAREA ,,,,, copy a rectangular screen section p.207

CURVE ,,,,,,, cubic Bezier-curve p.214

DEFFILL c,a,b set fill style and pattern p.226

DEFLINE a,b set line width and type p.228

DEFMARK c,a,g set color, size, type (POLYMARK) p.230

DEFMOUSE i set mouse cursor type p.231

DEFTEXT c,s,r,g set text properties for ltext p.232

DRAW [[x1,y1] TO] x2,y2draw line p.245

ELLIPSE x,y,a,b[,a1,a2]draw an ellipse p.250

FILL x,y flood fill p.292

GET x,y,w,h,g$ store a portion of the screen bitmap in g$ p.320

GPRINT like PRINT, but the output goes to the graphic windowp.330

GRAPHMODE mode set graphic-mode p.340

LINE x1,y1,x2,y2 draw a line p.384

LTEXT x,y,t$ Linegraphic-Text p.402

PBOX x1,y1,x2,y2 draw filled box p.466

PCIRCLE x,y,r[,a1,a2] draw filled circle p.468

PELLIPSE x,y,a,b[,a1,a2]draw filled ellipse p.470

108

CHAPTER 5. QUICK REFERENCE 5.14. GRAPHIC COMMANDS

PLOT x,y draw point p.476

POLYLINE n,x(),y() draw polygon in (x(),y()) p.482

POLYFILL n,x(),y() draw filled polygon p.481

POLYMARK n,x(),y() draw polygon points p.483

PRBOX x1,y1,x2,y2 draw filled rounded box p.485

PUT x,y,g$ map graphic at position p.499

PUT_BITMAP t$,i,i,i,i map bitmap p.502

RBOX x1,y1,x2,y2 draws a rounded box p.513

SCOPE a(),typ,ys,yo fast plot of data a() p.550

SCOPE y(),x(),typ,ys,yo,xs,xofast 2D plot of data p.550

SETFONT f$ set bitmap font p.563

SETMOUSE x,y set mouse cursor p.565

SGET screen$ capture graphic and store it in screen$ p.566

SPUT screen$ maps graphic to window/screen p.595

TEXT x,y,t$ draw text (bitmap font) p.617

5.14.2 Screen/Window commands

CLEARW [#n] clear graphic window p.193

CLOSEW [#n] close graphic window p.196

FULLW n make window fullscreen p.313

GET_GEOMETRY ,,,, returns the size of the window or screen p.322

GET_SCREENSIZE ,,,, returns the size of the screen p.325

INFOW n,t$ set window information p.356

MOVEW n,x,y move window p.429

OPENW n open window p.459

ROOTWINDOW draw on screen background p.538

NOROOTWINDOW switch back to normal output p.443

SAVESCREEN file$ save screen bitmap into a file p.548

SAVEWINDOW file$ save window bitmap into a file p.549

SCREEN n select Screen mode p.552

SHOWPAGE perform pending graphic operations p.576

SIZEW n,w,h size window p.582

TITLEW n,t$ set window title p.620

TOPW n move window to front p.621

109

5.15. FILE INPUT/OUTPUT FUNCTIONS CHAPTER 5. QUICK REFERENCE

USEWINDOW #n direct graphics output to window n p.640

VSYNC same as SHOWPAGE p.653

5.14.3 GUI/User input commands

ALERT a,b$,c,d$,var[,ret$]Show Alert/Infobox and wait for user input p.137

EVENT ,,,,,,,, Waits until an event occurs p.270

FILESELECT tit$,path$,dflt$,f$display a fileselector-box p.291

HIDEK hide the virtual keyboard p.347

HIDEM hide the mouse cursor p.348

KEYEVENT a,b Waits until key is pressed p.375

LISTSELECT tit$,list$()display a selector-box p.389

MENUDEF m$(),proc read menu titles and items from m$() p.411

MENUKILL deletes menu p.412

MENUSET n,x change menu-point #n with value x p.413

MENU STOP switch off the menu p.??

ONMENU execute the menu and p.??

MENU wait for menu-events p.410

MOUSE x,y,k gets position and state of mouse p.425

MOUSEEVENT ,,, wait for mouse event p.426

MOTIONEVENT ,,, wait for mouse movement p.424

OBJC_ADD t%,o%,c% add object to tree p.446

OBJC_DELETE t%,o% delete object from tree p.446

RSRC_LOAD file$ loads a GEM resource file p.544

RSRC_FREE unloads a GEM resource p.543

SHOWK show the virtual keyboard p.574

SHOWM show the mouse cursor p.575

5.15 File Input/Output functions

d%=DEVICE(file$) returns the device id of a file p.236

b=EOF(#n) TRUE if file pointer reached end of file p.261

110

CHAPTER 5. QUICK REFERENCE 5.16. VARIABLE/STRING MANIPULATION FUNCTIONS

b=EXIST(fname$) TRUE if file fname$ exist p.278

a=FREEFILE() Returns first free filenumber or -1 p.308

a$=FSFIRST$(path$,,) searches for the first file in a filesystem p.309

a$=FSNEXT$() searches for the next file p.312

c=INP(#n) reads a byte from channel/file. p.360

c=INP?(#n) number of bytes which can be read p.361

a=INP&(#n) reads a word (2 Bytes) from channel/file. p.360

i=INP%(#n) reads a long (4 Bytes) from channel/file. p.360

t$=INPUT$(#n,num) reads num bytes from file/channel n p.363

ret=IOCTL(#n,d%,) performs settings on channel/file. p.368

t$=LINEINPUT$(#n) reads a line from file/channel n p.385

p=LOC(#n) Returns value of file position indicator p.391

l=LOF(#n) length of file p.394

l%=SIZE(file$) returns the size of a file p.581

t$=TERMINALNAME$(#n) returns device name of terminal connected to #np.616

5.16 Variable/String Manipulation functions

adr%=ARRPTR(b()) pointer to array descriptors p.148

a=ASC(t$) ASCII code of first letter of string p.149

b$=BIN$(a[,n]) convert to binary number p.161

t$=CHR$(a) convert ASCII code to string p.188

a$=DECLOSE$(t$) removes enclosing characters from string p.223

a=DIM?(a()) returns number of elements of array a() p.238

a$=ENCLOSE$(t$[,p$]) encloses a string p.252

f=GLOB(a$,b$[,flags]) TRUE if a$ matches pattern b$ p.326

t$=HEX$(a[,n]) a as hexadecimal number p.346

t$=INLINE$(a$) 6-bit ASCII to 8-bit binary conversion p.358

a=INSTR(s1$,s2$[,n]) tests if s2$ is contained in s1$ p.364

a=TALLY(t$,s$) returns the number of occurrences of s$ in t$ p.613

b%=INT(a) convert to integer p.365

t$=LEFT$(a$[,n]) extracts n bytes from string a$ from the left p.379

t$=LEFTOF$(a$,b$) returns left part of a$ split at b$ p.380

l=LEN(t$) length of string p.381

111

5.17. DATA COMPRESSION AND CODING FUNCTIONS CHAPTER 5. QUICK REFERENCE

u$=LOWER$(t$) converts t$ to lower case p.399

l=LTEXTLEN(t$) size of text p.403

m$=MID$(t$,s[,l]) extracts l bytes from string t$ from position s p.417

t$=MKA$(a()) convert a whole array into a string p.420

t$=MKI$(i) convert integer to 2-byte string p.420

t$=MKL$(i) convert integer to 4-byte string p.420

t$=MKF$(a) convert float to 4 byte string p.420

t$=MKD$(a) convert float to 8 byte string p.420

o$=OCT$(d,n) convert integer d to string with octal number p.451

t$=REPLACE$(a$,s$,r$) replace s$ by r$ in a$ p.524

t$=REVERSE$(a$) Return the reverses of a string p.529

t$=RIGHT$(a$[,n]) returns right n characters of a$ p.530

t$=RIGHTOF$(a$,b$) returns right part of a$ split at b$ p.531

a=RINSTR(s1$,s2$[,n]) tests from right if s2$ is contained in s1$ p.532

t$=SPACE$(i) returns string consisting of i spaces p.590

t$=STR$(a[,b,c]) convert number to string p.600

t$=STRING$(i,w$) returns string consisting of i copies of w$ p.601

u$=TRIM$(t$) trim t$ p.624

u$=XTRIM$(t$) trim t$ p.670

u$=UCASE$(t$) converts t$ to upper case p.632

u$=UPPER$(t$) converts t$ to upper case p.639

u$=USING$(a,f$) formats a number p.641

a=VAL(t$) converts String/ASCII to number p.644

i=VAL?(t$) returns number of chars which are part of a numberp.644

adr%=VARPTR(v) returns pointer to variable p.649

u$=WORD$(b$,n) returns n th word of b$ p.662

e=WORT_SEP(t$,d$,m,a$,b$)splits t$ into parts p.??

5.17 Data compression and coding functions

b$=ARID$(a$) order-0 adaptive arithmetic decoding p.144

b$=ARIE$(a$) order-0 adaptive arithmetic encoding p.145

b$=BWTD$(a$) inverse Burrows-Wheeler transform p.172

b$=BWTE$(a$) Burrows-Wheeler transform p.173

112

CHAPTER 5. QUICK REFERENCE 5.18. MEMORY MANIPULATION FUNCTIONS

c$=COMPRESS$(a$) lossless compression on the string p.203

c$=UNCOMPRESS$(a$) lossless uncompression on the string p.633

c%=CRC(t$[,oc]) 32 bit checksum p.210

e$=ENCRYPT$(t$,key$) encrypts a message p.253

t$=DECRYPT$(e$,key$) decrypts a message p.224

b$=MTFD$(a$) Move To Front decoding p.432

b$=MTFE$(a$) Move To Front encoding p.433

b()=CVA(a$) returns array reconstructed from the string p.215

b%=CVI(a$) convert 2-byte string to integer p.217

b%=CVL(a$) convert 4-byte string to integer p.217

b=CVS(a$) convert 4-byte string to float p.218

b=CVF(a$) convert 4-byte string to float p.216

b=CVD(a$) convert 8-byte string to double p.216

t$=INLINE$(a$) 6-bit ASCII to 8-bit binary conversion p.358

t$=REVERSE$(a$) return the reverses of a string p.529

b$=RLD$(a$) run length decoding p.533

b$=RLE$(a$) run length encoding p.534

5.18 Memory Manipulation functions

adr%=ARRPTR(b()) pointer to array descriptors p.148

i%=DPEEK(adr%) read word from pointer adr p.243

b%=LPEEK(adr%) reads long (4 Bytes) from address p.400

adr%=MALLOC(n%) allocates size bytes of memory p.406

adr%=MSHRINK(adr%,n%) reduces the size of a storage area p.430

d%=PEEK(a%) reads Byte from address a p.469

adr%=REALLOC(oadr%,n%) changes the size of a storage area p.516

adr%=SHM_ATTACH(id) attaches the shared memory segment p.570

id=SHM_MALLOC(size,key)returns the identifier of the shared memory segmentp.573

adr%=SYM_ADR(#n,s$) return pointer to symbol from shared object file p.609

adr%=VARPTR(v) returns pointer to variable p.649

113

5.19. LOGIC FUNCTIONS CHAPTER 5. QUICK REFERENCE

5.19 Logic functions

c%=AND(a%,b%) same as c=(a AND b) p.140

c%=OR(a%,b%) same as c=(a OR b) p.461

c%=XOR(a%,b%) same as c=(a XOR b) p.668

c%=EQV(a%,b%) same as c=(a EQV b) p.262

c%=IMP(a%,b%) same as c=(a IMP b) p.354

b%=BCHG(x%,bit%) changes the bit of x from 0 to 1 or from 1 to 0 p.157

b%=BCLR(x%,bit%) sets the bit of x to zero. p.157

b%=BSET(x%,bit%) sets the bit of x to 1. p.170

b%=BTST(x%,bit%) returns -1 if the bit of x is 1. p.171

b%=BYTE(x%) same as b=x AND 255 p.174

b%=CARD(x%) same as b=x AND 0xffff p.180

b%=WORD(x%) same as b=x AND 0xffff p.661

b%=EVEN(d) TRUE if d is an even number p.269

b%=ODD(d) TRUE if d is an odd number p.452

b%=GRAY(a) Gray code. if a<0: inverse Gray code p.341

b%=SHL(a) Shift bits to left p.569

b%=SHR(a) Shift bits to right p.577

b%=SWAP(a) Swaps High and Low words of a p.607

5.20 Math functions

The math function library contains a comprehensive set of mathematics functions,

including:

• trigonometric

• arc-trigonometric

• hyperbolic

• arc-hyperbolic

• logarithmic (base e and base 10)

• exponential (base e and base 10)

• miscellaneous (square root, power, etc.)

Some math functions are defined on Vectors and Matrices.

114

CHAPTER 5. QUICK REFERENCE 5.20. MATH FUNCTIONS

b=ABS(a) absolute value b = |a| p.128

c=ADD(a,b) add c = a+b p.133

b=CBRT(a) cube root b = 3
√

a p.182

a=CEIL(b) truncate number p.183

a=CINT(b) truncate number (note: differs from INT() !) p.190

z=COMBIN(n,k) number of combinations z = n!

(n−k)!·k!
p.202

c=DIV(a,b) divide c = a/b p.240

b()=FFT(a()[,f%]) discrete Fourier Transformation of a real array p.288

a=FIX(b) round number to integer p.296

a=FLOOR(b) round number down to integer p.297

b=FRAC(a) fractional (non-integer) part of a p.306

y=GAMMA(x) gamma function y = Γ(x) p.317

y=LGAMMA(x) logarithm of gamma function y = |lnΓ(x)| p.383

a=HYPOT(x,y) returns a =
√

x2 + y2 p.350

b=INT(a) convert to integer p.365

b()=INV(a()) calculate inverse of a square matrix p.366

i=SGN(a) sign of a (-1,0,1) p.567

b=SQR(a) square root b =
√

a p.596

b=SQRT(a) square root b =
√

a p.596

b=TRUNC(a) truncate number p.628

b=LN(a) base e logarithm (natural log) p.395

b=LOG(a) base e logarithm (natural log) p.395

b=LOG10(a) base 10 logarithm p.395

b=LOGB(x) base 2 logarithm p.396

b=LOG1P(x) b = log(1+ x) accurate near zero p.397

c=MOD(a,b) same as c=(a MOD b) p.421

c=MUL(a,b) multiply c = a ·b p.434

b=EXP(a) exponential function b = ex (e to the x) p.281

b=EXPM1(a) exponential function minus 1 b = ex −1 p.282

b=FACT(a) factorial b = a! p.284

a=PRED(x) returns the preceding integer of x p.486

a=SUCC(x) returns the next higher integer p.606

b()=SOLVE(a(),x()) solve linear equation system p.583

z=VARIAT(n,k) number of permutations of n elements p.647

115

5.20. MATH FUNCTIONS CHAPTER 5. QUICK REFERENCE

5.20.1 Angles

Angles are always radians, for both, arguments and return values.

b=RAD(a) convert degrees to radians p.506

b=DEG(a) convert radians to degrees p.233

5.20.2 Trigonometric functions

b=SIN(a) sine p.579

b=COS(a) cosine p.208

b=TAN(a) tangent p.614

b=ASIN(a) arc-sine p.150

b=ACOS(a) arc-cosine p.131

b=ATAN(a) arc-tangent p.153

b=ATN(a) arc-tangent p.153

b=ATAN2(a,c) extended arc-tangent p.153

b=SINH(a) hyperbolic sine p.580

b=COSH(a) hyperbolic cosine p.208

b=TANH(a) hyperbolic tangent p.615

b=ASINH(a) hyperbolic arc-sine p.150

b=ACOSH(a) hyperbolic arc-cosine p.131

b=ATANH(a) hyperbolic arc-tangent p.154

5.20.3 Random numbers

a=GASDEV(dummy) random number Gauss distribution p.318

a=RAND(dummy) random integer number p.508

a=RANDOM(n) random integer number between 0 and n p.510

a=RND(dummy) random number between 0 and 1 p.536

a=SRAND(seed) same as RANDOMIZE p.597

116

CHAPTER 5. QUICK REFERENCE 5.21. SYSTEM FUNCTIONS

5.21 System functions

ret%=CALL(adr%[,par]) Calls a machine code or C subroutine p.177

t$=ENV$(n$) read value of environment variable n$ p.260

t$=ERR$(i) error message p.265

ret=EXEC(adr[,var]) see command EXEC, returns int p.276

i%=FORK() creates a child process p.300

d$=JULDATE$(a) date$ by Julian day a p.372

a=JULIAN(date$) Julian day p.373

a$=PARAM$(i) i’th word from the commandline p.464

t$=PRG$(i) program line p.488

a=SENSOR(i) get the value from the i th sensor p.561

t$=SYSTEM$(n$) execute shell with command n$ p.610

t$=UNIXTIME$(i) give time$ from TIMER value p.635

d$=UNIXDATE$(i) give date$ from TIMER value p.635

5.22 Graphic functions

c=COLOR_RGB(r,g,b[,a]) allocate color by rgb(a) value p.200

a=EVENT?(mask%) returns TRUE if a graphics event is pending p.272

a=FORM_ALERT(n,t$) message box with default button n p.301

~FORM_CENTER(adr%,x,y,w,h)centers the object tree on screen p.302

a=FORM_DIAL(,,,,,,,,) complex function for screen preparation p.303

a=FORM_DO(i) do dialog p.305

c=GET_COLOR(r,g,b) allocate color by rgb value p.321

d=OBJC_DRAW(,,,,) draw object tree p.448

ob=OBJC_FIND(tree,x,y) return object number by coordinates p.449

a=OBJC_OFFSET(t%,o,x,y)calculate absolute object coordinates p.450

c=POINT(x,y) returns color of pixel of graphic in window p.479

c=PTST(x,y) returns color of pixel of graphic in window p.497

a=RSRC_GADDR(typ,nr) get pointer to object tree p.??

117

5.23. OTHER FUNCTIONS CHAPTER 5. QUICK REFERENCE

5.23 Other functions

a=EVAL(t$) evaluate expression contained in t$ p.267

m=MAX(a,b,c,...) returns biggest value p.409

m=MAX(f()) not implemented yet

m=MIN(a,b,c,...) returns smallest value p.418

m=MIN(array()) not implemented yet

m=MIN(function()) not implemented yet

5.24 Subroutines and Functions

Subroutines are blocks of code that can be called from elsewhere in the program.

Subroutines can take arguments but return no results. They can access all vari-

ables available but also may have local variables (–> LOCAL). Subroutines are

defined with

PROCEDURE name(argumentlist)
... many commands

RETURN

Functions are blocks of code that can be called from elsewhere within an expres-

sion (e.g a=3*@myfunction(b)). Functions can take arguments and must return

a result. Variables are global unless declared local. For local variables changes

outside a function have no effect within the function except as explicitly specified

within the function. Functions arguments can be variables and arrays of any types.

Functions can return variables of any type. By default, arguments are passed by

value. Functions can be executed recursively. A function will be defined by:

FUNCTION name(argumentlist)
.. many more calculations
RETURN returnvalue

ENDFUNCTION

118

CHAPTER 5. QUICK REFERENCE 5.25. ERROR MESSAGES

5.25 Error Messages

X11-Basic can produce a number of internal errors, which are referred to by a

number (ERR) (see also ERROR).

The meaning of this errors and their text expression is as follows:

0 Divide by zero

1 Overflow

2 Value not integer -2147483648 .. 2147483647

3 Value not byte 0 .. 255

4 Value not short -32768 .. 32767

5 Square root: only positive numbers

6 Logarithm only for positive numbers

7 Unknown Error

8 Out of Memory

9 Function or command is not implemented in this version of X11-Basic

10 String too long

11 Argument needs to be positive

12 Program too long, buffer size exceeded –> NEW

13 Type mismatch in expression

14 Array () is already dimensioned

15 Array not dimensioned: ()

16 Field index too large

17 Dim too large

18 Wrong number of indexes

19 Procedure not found

20 Label not found

21 Open only "I"nput "O"utput "A"ppend "U"pdate

22 File already opened

23 Wrong file #

24 File not opened

25 Wrong input, no number

26 EOF - reached end of file

27 Too many points for Polyline/Polyfill

28 Array must be one dimensional

29 Illegal address!

119

5.25. ERROR MESSAGES CHAPTER 5. QUICK REFERENCE

30 Merge - no ASCII file

31 Merge - line too long - CANCEL

32 ==> Syntax error

33 Label not defined

34 Not enough data

35 data must be numeric

36 Error in program structure

37 Disk full

38 Command not allowed in interactive mode

39 Program Error GOSUB impossible

40 CLEAR not allowed within For-Next-loops or procedures

41 CONT not possible

42 Not enough parameters

43 Expression too complex

44 Function not defined

45 Too many parameters

46 Incorrect parameter, must be number

47 Incorrect parameter, must be string

48 Open "R" - incorrect Field length

49 Too many "R"-files (max. 31)

50 No "R"-file

51 Parser: Syntax Error <>

52 Fields larger than field length

53 Wrong graphic format

54 GET/PUT wrong Field-String length

55 GET/PUT wrong number

56 Wrong number of parameters

57 Variable is not yet initialized

58 Variable has incorrect type

59 Graphic has wrong color depth

60 Sprite-String length wrong

61 Error with RESERVE

62 Menu wrong

63 Reserve wrong

64 Pointer wrong

65 Field size < 256

66 No VAR-Array

120

CHAPTER 5. QUICK REFERENCE 5.25. ERROR MESSAGES

67 ASIN/ACOS wrong

68 Wrong VAR-Type

69 ENDFUNC without RETURN

70 too many variables

71 Index too large

72 Error in RSRC_LOAD

73 Error in RSRC_FREE

74 Array dimensioning mismatch

75 Stack overflow!

76 Illegal variable name . can not create.

77 Function not defined for complex numbers.

78 Incorrect parameter, must be array

79 Incorrect regular expression: , cannot match

80 Matrix operations only allowed for one or two dimensional arrays

81 Matrices do not have the same order

82 Vector product not defined

83 Matrix product not defined

84 Scalar product not defined

85 Transposition only for two dimensional matrices

86 Matrix must be square

87 Transposition not defined

88 FACT/COMBIN/VARIAT/ROOT not defined

89 Array must be two dimensional

90 Error in Local

91 Error in For

92 Resume (next) not possible: Fatal, For or Local

93 Stack Error

94 Parameter must be float ARRAY

95 Parameter must be ARRAY

96 ARRAY has the wrong type. Can not convert.

97 This operation is not allowed for root window

98 Illegal Window number (0-16)

99 Window does not exist

100 X11-BASIC Version 1.27 Copyright (c) 1997-2020 Markus Hoffmann

101 ** 1 - Segmentation fault

102 ** 2 - Bus Error: peek/poke ?

103 ** 3 - Address error: Dpoke/Dpeek, Lpoke/Lpeek?

121

5.25. ERROR MESSAGES CHAPTER 5. QUICK REFERENCE

104 ** 4 - Illegal Instruction

105 ** 5 - Divide by Zero

106 ** 6 - CHK exception

107 ** 7 - TRAPV exception

108 ** 8 - Privilege Violation

109 ** 9 - Trace exception

110 ** 10 - Broken pipe

131 * Number of hash collisions exceeds maximum generation counter value.

132 * Wrong medium type

133 * No medium found

134 * Quota exceeded

135 * Remote I/O error

136 * Is a named type file

137 * No XENIX semaphores available

138 * Not a XENIX named type file

139 * Structure needs cleaning

140 * Stale NFS file handle

141 * Operation now in progress

142 * Operation already in progress

143 * No route to host

144 * Host is down

145 * Connection refused

146 * Connection timed out

147 * Too many references: can not splice

148 * Can not send after transport endpoint shutdown

149 * Transport endpoint is not connected

150 * Transport endpoint is already connected

151 * No buffer space available

152 * Connection reset by peer

153 * Software caused connection abort

154 * Network dropped connection because of reset

155 * Network is unreachable

156 * Network is down

157 * Can not assign requested address

158 * Address already in use

159 * Address family not supported by protocol

160 * Protocol family not supported

122

CHAPTER 5. QUICK REFERENCE 5.25. ERROR MESSAGES

161 * Operation not supported on transport endpoint

162 * Socket type not supported

163 * Protocol not supported

164 * Protocol not available

165 * Protocol wrong type for socket

166 * Message too long

167 * Destination address required

168 * Socket operation on non-socket

169 * Too many users

170 * Streams pipe error

171 * Interrupted system call should be restarted

172 * Illegal byte sequence

173 * Can not exec a shared library directly

174 * Attempting to link in too many shared libraries

175 * .lib section in a.out corrupted

176 * Accessing a corrupted shared library

177 * Can not access a needed shared library

178 * Remote address changed

179 * File descriptor in bad state

180 * Name not unique on network

181 * Value too large for defined data type

182 * Not a data message

183 * RFS specific error

184 * Try again

185 * Too many symbolic links encountered

186 * File name too long

187 * Resource deadlock would occur

188 * Advertise error

189 * memory page error

190 * no executable

191 * Link has been severed

192 * Object is remote

193 * Math result not representable

194 * Math arg out of domain of func

195 * Cross-device link

196 * Device not a stream

197 * Mount device busy

123

5.25. ERROR MESSAGES CHAPTER 5. QUICK REFERENCE

198 * Block device required

199 * Bad address

200 * No more processes

201 * No children

202 * Exchange full

203 * Interrupted system call

204 * Invalid exchange

205 * Permission denied, you must be super-user

206 * Operation in this channel not possible (any more)

207 * no more files

208 * Link number out of range

209 * Level 3 reset

210 * Illegal Drive identifier

211 * Level 2 not synchronized

212 * Channel number out of range

213 * Identifier removed

214 * No message of desired type

215 * Operation would block

216 * illegal page address

217 * Directory not empty

218 * Function not implemented

219 * Illegal Handle

220 * Access not possible

221 * Too many open files

222 * Path not found

223 * File not found

224 * Broken pipe

225 * Too many links

226 * Read-Only File-System

227 * Illegal seek

228 * No space left on device

229 * File too large

230 * Text file busy

231 * Not a typewriter

232 * Too many open files

233 * File table overflow

234 * Invalid argument

124

CHAPTER 5. QUICK REFERENCE 5.25. ERROR MESSAGES

235 * Is a directory

236 * Not a directory

237 * No such device

238 * Cross-device link

239 * File exists

240 * Bad sector (verify)

241 * unknown device

242 * Disk was changed

243 * Permission denied

244 * Not enough core memory

245 * read error

246 * write error

247 * No paper

248 * Sector not found

249 * Arg list too long

250 * Seek Error

251 * Bad Request

252 * CRC Error wrong check sum

253 * No such process

254 * Timeout

255 * IO-Error

125

X11-Basic
6 COMMAND REFERENCE

This chapter is a command reference for quick lookup of short explanations of all

bult-in X11-Basic operators, variables, commands, and functions.

6.1 Syntax templates

This manual describes the syntax of BASIC commands and BASIC functions in a

generalized form. Here is an example:

PRINT [#<device-number>,] <expression> [<,>|<;> [...]]

Those parts of the command that must appear literally in the source code (like

PRINT in the example above) are all uppercase. Descriptions in angle brackets

("<>") are not meant to appear literally in the source code but are descriptive ref-

erences to the element that is supposed to be used in the source code at this

place, like a variable, a numeric expression etc. Optional elements are listed in-

side square brackets ("[]"). They may be omitted from the command line. Mutually

exclusive alternatives are separated by the "|" character. Exactly one of these al-

ternatives must appear in the command line. Finally, repetitive syntax is indicated

by three dots "...". Here are some BASIC command lines that all match the syntax

template above:

PRINT x
PRINT #1,2*y
PRINT "result = ";result

126

CHAPTER 6. COMMAND REFERENCE 6.2. A

6.2 A

127

6.2. A CHAPTER 6. COMMAND REFERENCE

Function: ABS()

Syntax: a=ABS(b)
a%=ABS(b%)
a=ABS(b#)
a&=ABS(b&)

DESCRIPTION:

Returns the absolute value of an expression. The absolute value is the value

without regard to the sign (negative, zero or positive). The result of ABS will always

be a positive number or zero. The absolute value of a complex number is a real

positive number.

EXAMPLE:

PRINT ABS(-34.5),ABS(34) ! Result: 34.5 34
PRINT ABS(4+3i) ! Result: 5

SEE ALSO: SGN()

128

CHAPTER 6. COMMAND REFERENCE 6.2. A

Command: ABSOLUTE

Syntax: ABSOLUTE var,adr%

DESCRIPTION:

ABSOLUTE assigns the address adr% to the variable var. This way you can

make the internal reference memory pointer of a X11-Basic variable use a different

memory location, for example the one of another variable.

You could use this to pass a variable by reference to a PROCEDURE or FUNC-

TION (instead of the standard behaviour, which always passes variable by value to

functions and procedures by default).

EXAMPLE:

a=3
b=4
ABSOLUTE a,VARPTR(b)
PRINT a ! Result: 4 Variables a and b are now identical.
b=55
PRINT a ! changing b now also affects a (and vice versa)

EXAMPLE:

’ pass a variables "by reference" to a X11-Basic PROCEDURE
a=12
@fillwith4711(VARPTR(a))
PRINT a

129

6.2. A CHAPTER 6. COMMAND REFERENCE

PROCEDURE fillwith4711(adr%)
LOCAL b
ABSOLUTE b,adr%
b=4711

RETURN

SEE ALSO: VAR, VARPTR()

130

CHAPTER 6. COMMAND REFERENCE 6.2. A

Function: ACOS()

Syntax: a=ACOS(b)

DESCRIPTION:

The ACOS() is the arc cosine function, i.e. the inverse of the COS() function.

It returns the angle (in radian), which, fed to the cosine function will produce the

argument passed to the ACOS() function.

EXAMPLE:

PRINT ACOS(0.5),ACOS(COS(PI)) ! Result: 1.047197551197 3.14159265359

SEE ALSO: COS(), ASIN()

*

Function: ACOSH()

131

6.2. A CHAPTER 6. COMMAND REFERENCE

Syntax: a=ACOSH(b)

DESCRIPTION:

The ACOSH() is the inverse hyperbolic cosine function, i.e. the inverse of the

COSH() function. It returns the angle (in radian), which, fed to the hyperbolic cosine

function will produce the argument passed to the ACOSH() function.

EXAMPLE:

PRINT ACOSH(2),ACOSH(COSH(0)) ! Result: 1.316957896925 0

SEE ALSO: COSH(), ASINH()

132

CHAPTER 6. COMMAND REFERENCE 6.2. A

Command: ADD

Syntax: ADD a,<num-expression>
ADD a%,<num-expression>
ADD a#,<num-expression>
ADD a&,<num-expression>

DESCRIPTION:

Increase the value of variable a by the result of <num-expression>.

EXAMPLE:

a=0.5
ADD a,5
PRINT a ! Result: 5.5

SEE ALSO: SUB, MUL, DIV, ADD()

*

Function: ADD()

133

6.2. A CHAPTER 6. COMMAND REFERENCE

Syntax: c=ADD(a,b)
c&=ADD(a&,b&)
c#=ADD(a#,b#)
c%=ADD(a%,b%)

DESCRIPTION:

The function ADD() returns the sum of its arguments.

EXAMPLE:

a=0.5
b=ADD(a,5)
PRINT b ! Result: 5.5

SEE ALSO: SUB(), MUL(), DIV(), ADD

134

CHAPTER 6. COMMAND REFERENCE 6.2. A

Command: AFTER

Syntax: AFTER <seconds>, <procedure-name>

DESCRIPTION:

AFTER allows a PROCEDURE to be called after the expiry of a given time. The

time must be specified in seconds.

Comment:

The current implementation uses the alarm mechanism of the kernel of the

operating system. This means, only one procedure can be scheduled for trigger

at the same time. Once scheduled, AFTER cannot be canceled anymore. But

you can overwrite it with following AFTER commands. If you use another AFTER

command before the previous one has triggered the procedure the previous will

not be triggered anymore.

The procedure is excecuted exactly after the given time, interrupting the cur-

rently running process, even in the middle of a command. This can lead to a mess

in program stack, unpredictible crashes may be caused. Using AFTER (and EV-

ERY) is not safe! Keep the actions inside the intterupt PROCEDURE simple. The

interrupt procedure should not do complicated things, it should not use interactive

commands and should not wait for user input. Maybe just assign a constant to a

variable.

Maybe also good to know: A PAUSE command will be immediately ended, when

the AFTER procedure is triggered, and The procedure will still be triggered, even

when the main program has already ended.

135

6.2. A CHAPTER 6. COMMAND REFERENCE

EXAMPLE:

PRINT "You have 10 seconds to enter your name: "
AFTER 10,alarm
INPUT name$
END
PROCEDURE alarm
PRINT "Time out !"
QUIT

RETURN

SEE ALSO: EVERY

136

CHAPTER 6. COMMAND REFERENCE 6.2. A

Command: ALERT

Syntax: ALERT type%,message$,defaultbutton%,button$,click%[,text$]

DESCRIPTION:

Creates and displays an alert box (with a message) and asks for user input.

The message box can have one ore more buttons which can be clicked by the user

to exit the message box. Also the user can enter text in several text input fields if

they have been specified. The number of the button clocked is returned in click%

and the entered text in text$.

type% chooses type of alert symbol, 0=none, 1="!", 2="?", 3="stop" message$

Contains main text. Lines are separated by the ’|’ symbol. Editable fields are

started with a CHR$(27) followed by the default text to be edited (until "|"). button$

Contains text for the buttons (separated by ’|’). defaultbutton% is the button to be

highlighted (0=none,1,2,...) to be selected by just pressing return. click% This

variable is set to the number of the button selected. text$ This is a string variable

which holds any text-input the user made. It holds the contents of the editable

fields separated by a CHR$(13).

Comment:

The length of the text input fields is given by the length of the default text. If you

want the user to be able to enter longer texts than the default, the default can be

extended by zero bytes (CHR$(0)) which are invisible to the user.

EXAMPLES:

ALERT 1,"Pick a|button",1,"Left|Right",a

137

6.2. A CHAPTER 6. COMMAND REFERENCE

ALERT 0,"You pressed|Button"+STR$(a),0,"OK",a

’ Example of editable fields
i=1
name$="TEST01"+STRING$(4,CHR$(0)) ! maximum length 6+4=10
posx$="N54°50’32.3"
t$="Edit waypoint:||Name: "+chr$(27)+name$+"|"
t$=t$+"Position: "+chr$(27)+posx$+"|"
ALERT 0,t$,1,"OK|UPDATE|DELETE|CANCEL",a,f$
WHILE LEN(f$)
WORT_SEP f$,CHR$(13),0,a$,f$
PRINT "Field";i;": ",a$
INC i

WEND

SEE ALSO: FORM_ALERT(), WORT_SEP, CHR$()

138

CHAPTER 6. COMMAND REFERENCE 6.2. A

Operator: AND

Syntax: <num-expression1> AND <num-expression2>

DESCRIPTION:

AND calculates the bit-wise logical and-opearation on the values on both sides.

It can be used to determine if BOTH conditions are true. If both expression1 AND

expression2 are true, the result is true; otherwise 0 is returned for false.

Also used to compare bits in binary number operations. 1 AND 1 return a 1, all

other combinations of 0’s and 1’s produce 0.

EXAMPLES:

Print 3=3 AND 4>2 Result: -1 (true)
Print 3>3 AND 5>3 Result: 0 (false)

PRINT (30>20 AND 20<30) Result: -1 (true)
PRINT (4 AND 255) Result: 4

SEE ALSO: NAND, OR, NOT, XOR, IF

*

139

6.2. A CHAPTER 6. COMMAND REFERENCE

Function: AND()

Syntax: <num-result>=AND(<num-expression>,<num-expression2>)

DESCRIPTION:

This function returns the result of a bitwise AND operation. Returns <num-

expression> AND <num-expression2>

EXAMPLE:

PRINT AND(TIMER,0xff) ! Result: 67

SEE ALSO: OR(), AND

140

CHAPTER 6. COMMAND REFERENCE 6.2. A

Variable: ANDROID?

Syntax: ANDROID?

DESCRIPTION:

This variable gives -1 (=TRUE) if the operating system is Android; else the

variable has a value of 0. With testing this variable the program can find out if it is

running on an Android device.

EXAMPLE:

IF NOT ANDROID?
MOUSEEVENT
QUIT

ELSE
END

ENDIF

SEE ALSO: TRUE, FALSE, UNIX?, WIN32?

141

6.2. A CHAPTER 6. COMMAND REFERENCE

Variable: ANS

Syntax: ANS

DESCRIPTION:

This variable stores the most recent result of a calculation which has not been

assigned to any variable. If you enter X11-Basic code that returns a number result

without specifying a variable which the result should be assigned to, X11-Basic

creates the ANS variable and stores the result there.

EXAMPLE:

’ perform a simple calculation in direct mode
’ without assigning the result to a variable:
1+2 ! Result: 3
4+ANS ! Result: 7
’ perform a simple calculation in direct mode
’ and assign the result to the variable result,
’ ANS will not be created:
result=1+2
PRINT result ! Result: 3

Comment:

The variable ANS can be used like a normal variable as well. It will only be

changed if a short calculation is used (normally in the direct/interactive mode).

This is useful if the X11-Basic interpreter is used like a pocket calculator.

SEE ALSO: TRUE, FALSE, PI

142

CHAPTER 6. COMMAND REFERENCE 6.2. A

Function: ARG()

Syntax: a=ARG(z#)

DESCRIPTION:

Returns the argument of a complex value z#. Any complex number a# can be

expressed as: a#=ABS(a#)*EXP(1i*ARG(a#))

The argument is the phase angle of the complex number. The return value is a

real value in the range of (-PI,PI].

EXAMPLE:

PRINT DEG(ARG(4+4i)) ! Result: 45

SEE ALSO: IMAG(), REAL(), ABS(), ATAN2(), DEG()

143

6.2. A CHAPTER 6. COMMAND REFERENCE

Function: ARID$()

Syntax: b$=ARID$(a$)

DESCRIPTION:

The arid$()-takes a string argument and returns the order-0 adaptive arithmetic

decoding of that string.

Arithmetic coding is a form of entropy encoding used in lossless data compres-

sion.

EXAMPLE:

t$="Hello, this is a test!!!! This shows arithmetric coding and decoding"
t$=t$+" with X11-Basic."
b$=ARIE$(t$) ! encode it
PRINT "The string was compressed to ";ROUND(LEN(b$)/LEN(t$)*1000)/10;"%"
c$=ARID$(b$) ! decode it
PRINT c$

Result:
The string was compressed to 88.1%
Hello, this is a test!!!! This shows arithmetric coding and decodin....

SEE ALSO: ARIE$()

144

CHAPTER 6. COMMAND REFERENCE 6.2. A

Function: ARIE$()

Syntax: <string-result>=ARIE$(<string-expression>)

DESCRIPTION:

The ARIE$() takes a string argument and returns the order-0 adaptive arith-

metic encoding of that string.

Frequently used characters will be stored with fewer bits and not-so-frequently

occurring characters will be stored with more bits, resulting in fewer bits used in

total.

EXAMPLE:

t$="Hello, this is a test!!!! This shows arithmetric coding and "
t$=t$+"decoding with X11-Basic."
b$=ARIE$(t$) ! encode it
print "The string was compressed to ";round(len(b$)/len(t$)*1000)/10;"%"
c$=arid$(b$) ! decode it
print c$

Result:
The string was compressed to 88.1%
Hello, this is a test!!!! This shows arithmetric coding and deco....

SEE ALSO: ARID$()

145

6.2. A CHAPTER 6. COMMAND REFERENCE

Command: ARRAYCOPY

Syntax: ARRAYCOPY d(),s()

DESCRIPTION:

Copies the contents of array s() to d() (including dimensions). This is the same

as the statement: d()=s().

SEE ALSO: DIM

*

Command: ARRAYFILL

Syntax: ARRAYFILL x(),n
ARRAYFILL x$(),t$

DESCRIPTION:

Assigns the value to all elements of an array or matrix. It can be used to give

all array elements a defined value, e.g. just after dimensioning the array where the

contents are yet undefined.

146

CHAPTER 6. COMMAND REFERENCE 6.2. A

EXAMPLE:

DIM a(100)
ARRAYFILL a(),13
PRINT a(22) Result: 13

SEE ALSO: DIM

147

6.2. A CHAPTER 6. COMMAND REFERENCE

Function: ARRPTR()

Syntax: adr%=ARRPTR(a())

DESCRIPTION:

Finds the address of the descriptor of an array.

EXAMPLE:

DIM a(100,4)
adr%=ARRPTR(a())
PRINT "Array has dimension: ";LPEEK(adr%)
PRINT "Array index list: ";
FOR i%=0 TO LPEEK(adr%)
PRINT LPEEK(LPEEK(adr%+4)+4*i%);
IF i%<LPEEK(adr%)
PRINT ",";

ENDIF
NEXT i%
PRINT

SEE ALSO: VARPTR(), UBOUND(), DIM?

148

CHAPTER 6. COMMAND REFERENCE 6.2. A

Function: ASC()

Syntax: <num-result>=ASC(<string-expression>)

DESCRIPTION:

Returns the ASCII code value (a number between 0 and 255) of the first char-

acter in a string. ASCII stands for American Standard Code for Information Inter-

change. ASC returns 0 if the length of string is zero or the ASCII code of the string

is zero.

EXAMPLE:

PRINT ASC("A"), ASC("T") ! Result: 65, 84
PRINT ASC("TEST") ! Result: 84

SEE ALSO: CHR$(), CVI(), CVL(), CVS()

149

6.2. A CHAPTER 6. COMMAND REFERENCE

Function: ASIN()

Syntax: <num-result>=ASIN(<num-expression>)

DESCRIPTION:

The ASIN() is the arc sine function, i.e. the inverse of the SIN() function. Or,

more elaborate: It Returns the angle (in radian, not degrees !), which, fed to the

sine function will produce the argument passed to the ASIN() function.

EXAMPLE:

PRINT 6*ASIN(0.5) ! Result: 3.14159265359

SEE ALSO: ACOS(), SIN()

*

Function: ASINH()

150

CHAPTER 6. COMMAND REFERENCE 6.2. A

Syntax: <num-result>=ASINH(<num-expression>)

DESCRIPTION:

The ASINH() function calculates the inverse hyperbolic sine of x, i.e. the inverse

of the SINH() function. It returns the angle (in radian), which, fed to the hyperbolic

sine function will produce the argument passed to the ASINH() function.

SEE ALSO: ACOSH(), SINH()

151

6.2. A CHAPTER 6. COMMAND REFERENCE

Keyword: AT()

Syntax: PRINT AT(y,x);[...]

DESCRIPTION:

The AT statement takes two numeric arguments (e.g. AT(2,3)) and can be used

in combination with the PRINT or GPRINT command.

The two numeric arguments of the AT function may range from 1 to the width

of your terminal minus 1, and from 0 to the height of your terminal minus 1; if any

argument exceeds these values, it will be truncated accordingly. However, X11-

Basic has no influence on the size of your terminal (80x25 is a common, but not

mandatory), the size of your terminal and the maximum values acceptable within

the AT statement may vary. To get the size of your terminal you may use the COLS

and ROWS variables. To get the actual position of the text cursor you may use the

CRSCOL and CRSLIN variables.

EXAMPLE:

PRINT AT(3,1);" This is a Title "
GPRINT AT(4,7);"Test"

SEE ALSO: PRINT, GPRINT, TAB(), SPC(), COLS, ROWS, CRSLIN, CRSCOL, LOCATE

152

CHAPTER 6. COMMAND REFERENCE 6.2. A

Function: ATN(), ATAN()

Syntax: <num-result>=ATN(<num-expression>)
<num-result>=ATAN(<num-expression>)

DESCRIPTION:

ATN() and ATAN() both return the angle in radians, for the inverse tangent of the

expression.

EXAMPLE:

PRINT 4*ATAN(1) ! Result: 3.14159265359

SEE ALSO: ACOS(), ASIN(), ATAN2()

*

Function: ATAN2()

153

6.2. A CHAPTER 6. COMMAND REFERENCE

Syntax: c=ATAN2(a,b)

DESCRIPTION:

The ATAN() function has a second form which accepts two arguments: ATAN2(a,b)

which is (mostly) equivalently to ATAN(a/b) except for the fact, that ATAN2 returns

an angle in the range (-PI to PI], whereas ATAN returns an angle in the range -PI/2

to PI/2.

EXAMPLE:

PRINT DEG(ATAN2(0,-1)) ! Result: 180

SEE ALSO: ATAN()

*

Function: ATANH()

Syntax: <num-result>=ATANH(<num-expression>)

154

CHAPTER 6. COMMAND REFERENCE 6.2. A

DESCRIPTION:

The ATANH() function calculates the inverse hyperbolic tangent of x; that is the

value whose hyperbolic tangent is x. If the absolute value of x is greater than 1.0,

ATANH() returns not-a-number (NaN).

EXAMPLE:

PRINT DEG(ATANH(-0.5)) ! Result: -31.47292373095

SEE ALSO: ATAN()

155

6.3. B CHAPTER 6. COMMAND REFERENCE

6.3 B

156

CHAPTER 6. COMMAND REFERENCE 6.3. B

Function: BCHG()

Syntax: b%=BCHG(x%,bit%)

DESCRIPTION:

Changes the bit% bit of x% from 0 to 1 or from 1 to 0.

EXAMPLE:

PRINT BCHG(1,2) ! result: 5
PRINT BCHG(5,2) ! result: 1

SEE ALSO: BSET(), BCLR()

*

Function: BCLR()

Syntax: b%=BCLR(x%,bit%)

157

6.3. B CHAPTER 6. COMMAND REFERENCE

DESCRIPTION:

BCLR sets the bit%-th bit of x% to zero.

EXAMPLE:

PRINT BCLR(7,1) ! result: 5

SEE ALSO: BSET(), BCHG()

158

CHAPTER 6. COMMAND REFERENCE 6.3. B

Command: BEEP, BELL

Syntax: BEEP
BELL

DESCRIPTION:

Sounds the speaker of your terminal. This command is not a sound interface,

so you can neither vary the length or the height of the sound (technically, it just

prints CHR$(7)). BELL is exactly the same as BEEP.

SEE ALSO: SOUND

159

6.3. B CHAPTER 6. COMMAND REFERENCE

Command: BGET

Syntax: BGET #n,adr%,len%

DESCRIPTION:

Reads len% bytes from a data channel into an area of memory starting at ad-

dress adr%.

Unlike with BLOAD, several different areas of memory can be read from a file.

EXAMPLE:

OPEN "I",#1,"test.rsc"
header$=SPACE$(32)
BGET #1,VARPTR(header$),32
CLOSE #1

SEE ALSO: BLOAD, BPUT

160

CHAPTER 6. COMMAND REFERENCE 6.3. B

Function: BIN$()

Syntax: a$=BIN$(<num-expression>[,len%])

DESCRIPTION:

The bin$()-takes a numeric argument and converts it into a string of binary digits

(i.e. ’0’ and ’1’). The minimal length of the output, the minimal number of digits, can

be specified by the optional second argument. If the specified length is bigger than

needed, the string is filled with leading zeros. If you need binary representations

with sign, use RADIX$() instead.

EXAMPLE:

PRINT BIN$(64,8),BIN$(-2000)
Result: 01000000 11111111111111111111100000110000

SEE ALSO: HEX$(), OCT$(), RADIX$()

161

6.3. B CHAPTER 6. COMMAND REFERENCE

Command: BLOAD

Syntax: BLOAD filename$,adr%

DESCRIPTION:

BLOAD reads the specified file into memory at address adr%. The memory

adr% is pointing to should be allocated before. You should check if the file exists

prior to using this function. This command is meant to be used for loading binary

data. To load a text file, use OPEN and INPUT # to remain compatible with other

BASIC implementations.

EXAMPLE:

IF EXIST("test.dat")
adr%=MALLOC(SIZE("test.dat"))
BLOAD "test.dat",adr%

ENDIF

SEE ALSO: MALLOC(), BGET, INPUT, INPUT$(), BSAVE

162

CHAPTER 6. COMMAND REFERENCE 6.3. B

Command: BMOVE

Syntax: BMOVE scr%,dst%,len%

DESCRIPTION:

Fast movement of memory blocks.

scr% is the address at which the block to be moved begins. dst% is the address

to which the block is to moved. len% is the length of the block in bytes.

EXAMPLE:

a=1
b=2
BMOVE VARPTR(a),VARPTR(b),8 ! same as b=a

SEE ALSO: PEEK(), POKE, BLOAD, BSAVE

163

6.3. B CHAPTER 6. COMMAND REFERENCE

Command: BOUNDARY

Syntax: BOUNDARY flag%

DESCRIPTION:

Switch off (or on) borders on filled shapes (PBOX, PCIRCLE ..). If flag% is zero

- no border will be drawn (which is the default).

Comment:

Currently this command has no effect.

EXAMPLE:

BOUNDARY FALSE

SEE ALSO: PBOX, PCIRCLE

164

CHAPTER 6. COMMAND REFERENCE 6.3. B

Command: BOX

Syntax: BOX x,y,x2,y2

DESCRIPTION:

Draws a rectangle with corners at (x,y) and (x2,y2). The screen coordinates

start in the upper left corner. X increases to the right and y down to the bottom of

the screen or window.

EXAMPLE:

COLOR COLOR_RGB(1,1,0)
BOX 20,20,620,380

SEE ALSO: PBOX, GET_GEOMETRY

165

6.3. B CHAPTER 6. COMMAND REFERENCE

Command: BPUT

Syntax: BPUT #n,adr%,len%

DESCRIPTION:

Writes len% bytes from an area of memory starting at adr% out to a data chan-

nel #n.

EXAMPLE:

OPEN "O",#1,"test.dat"
BPUT #1,VARPTR(t$),LEN(t$)
CLOSE #1

SEE ALSO: BGET

166

CHAPTER 6. COMMAND REFERENCE 6.3. B

Command: BREAK

Syntax: BREAK

DESCRIPTION:

BREAK transfers control immediately outside the enclosing loop or select state-

ment. This is the preferred way of leaving such a statement (rather than goto).

Comment:

BREAK cannot be used in direct mode. Use EXIT instead.

EXAMPLE:

DO
INC i
IF i>5
PRINT "i is big enough."
BREAK

ENDIF
LOOP

SEE ALSO: EXIT IF

167

6.3. B CHAPTER 6. COMMAND REFERENCE

Command: BROKER

Syntax: BROKER url$[,user$,passwd$,pesistence]

DESCRIPTION:

Define a (mqtt) broker and connect to it. You can specify a username and a

password if needed. You can specify if the session should be persistent or not.

The url$ takes the form "protocol://host:port". Currently, protocol must be tcp or

ssl. For host, you can specify either an IP address or a host name.

Comment:

Only available, if MQTT support is compiled in.

EXAMPLE:

BROKER "tcp://localhost:1883"

SEE ALSO: PUBLISH, SUBSCRIBE

168

CHAPTER 6. COMMAND REFERENCE 6.3. B

Command: BSAVE

Syntax: BSAVE filename$,adr%,len%

DESCRIPTION:

Save len% bytes in memory from address adr% to a file named filename$. If

filename does not exist, it will be created. If it does exist, the old content will be

overwritten. This command is meant be be used for saving binary data obtained

via BLOAD. To save text files, use OPEN and PRINT # to remain compatible with

other BASIC implementations.

EXAMPLE:

BSAVE "content-t.dat",VARPTR(t$),LEN(t$)

SEE ALSO: BLOAD, BPUT

169

6.3. B CHAPTER 6. COMMAND REFERENCE

Function: BSET()

Syntax: b%=BSET(x%,bit%)

DESCRIPTION:

BSET sets the bit%-th bit of x% to 1.

EXAMPLE:

PRINT BSET(0,2) ! result: 4

SEE ALSO: BCHG(), BCLR(), BTST()

170

CHAPTER 6. COMMAND REFERENCE 6.3. B

Function: BTST()

Syntax: <bool-result>=BTST(x%,bit%)

DESCRIPTION:

BTST results in -1 (TRUE) if bit bit% of x% is set.

EXAMPLE:

PRINT BTST(4,2) ! result: -1

SEE ALSO: BCHG(), BCLR(), BSET()

171

6.3. B CHAPTER 6. COMMAND REFERENCE

Function: BWTD$()

Syntax: b$=BWTD$(a$)

DESCRIPTION:

BWTD$() performs the inverse Burrows-Wheeler transform on the string a$.

The Burrows-Wheeler transform (BWT) is an algorithm used in data compres-

sion techniques. It was invented by Michael Burrows and David Wheeler.

BWTD$() can restore the original content of a string which has been coded with

BWTE$() before.

EXAMPLE:

t$="Hello, this is the Burrows Wheeler transformation!"
b$=bwte$(t$) ! encode it
print b$
c$=bwtd$(b$) ! decode it
print c$

Result:
esss,rno ! rmhheHlstWtth eelroalifretoruwiin a Bo
Hello, this is the Burrows Wheeler transformation!

SEE ALSO: BWTE$()

172

CHAPTER 6. COMMAND REFERENCE 6.3. B

Function: BWTE$()

Syntax: b$=BWTE$(a$)

DESCRIPTION:

BWTE$() performs a Burrows-Wheeler transform on the string a$.

The Burrows-Wheeler transform (BWT) is an algorithm used in data compres-

sion techniques such as bzip2. It was invented by Michael Burrows and David

Wheeler.

When a character string is transformed by the BWT, none of its characters

change. It just rearranges the order of the characters. If the original string had

several substrings that occurred often, then the transformed string will have sev-

eral places where a single character is repeated multiple times in a row. This is

useful for compression, since it tends to be easy to compress a string that has runs

of repeated characters by techniques such as run-length encoding.

EXAMPLE:

t$="Hello, this is the Burrows Wheeler transformation!"
b$=bwte$(t$) ! encode it
print b$
c$=bwtd$(b$) ! decode it
print c$

Result:
esss,rno ! rmhheHlstWtth eelroalifretoruwiin a Bo
Hello, this is the Burrows Wheeler transformation!

SEE ALSO: BWTD$()

173

6.3. B CHAPTER 6. COMMAND REFERENCE

Function: BYTE()

Syntax: <num>=BYTE(<num-expression>)

DESCRIPTION:

Returns lower 8 bits of argument. (same as a=b AND 255)

EXAMPLE:

PRINT BYTE(-200) ! Result: 56

SEE ALSO: CARD(), WORD(), SWAP()

174

CHAPTER 6. COMMAND REFERENCE 6.4. C

6.4 C

175

6.4. C CHAPTER 6. COMMAND REFERENCE

Command: CALL

Syntax: CALL adr%[,<parameter-list>]

DESCRIPTION:

Calls a machine code or C subroutine at address <adr> without return value.

Optional parameters are passed on the stack. (like in C). The default parameter-

type is (4-Byte) integer. If you want to specify other types, please use prefixes:

D: -- double (8 bytes)
F: -- float (4 bytes)
L: -- integer (4 bytes)
R: -- long integer (8 bytes)
W: -- short integer (2 bytes)
B: -- byte (1 byte)
P: -- pointer (4 bytes or 8 bytes, depending on the OS)

Comment:

The Option P: behaves the same as L: on 32bit operating systems. But you

should use P: for pointers (VARPTR() etc...) into memory so that it can be trans-

lated from X11-Basic internal 32bit representation to the 64bit adresses on 64it

operating systems. The B: and W: options behave the same as the L: option.

EXAMPLE:

DIM result(100)
LINK #1,"simlib.so"
adr%=SYM_ADR(#1,"CalcBeta")

176

CHAPTER 6. COMMAND REFERENCE 6.4. C

CALL adr%,D:1.2,L:0,P:VARPTR(result(0))
UNLINK #1

SEE ALSO: CALL(), EXEC

*

Function: CALL()

Syntax: ret%=CALL(adr%[,<parameter-list>])

DESCRIPTION:

Calls a machine code or C subroutine at address <adr%> and returns an integer

value ret%. Optional parameters are passed on the stack. (like in C). The default

parameter-type is (4-Byte) integer. If you want to specify other types, please use

prefixes:

D: -- double (8 bytes)
F: -- float (4 bytes)
L: -- integer (4 bytes)
R: -- long integer (8 bytes)
W: -- short integer (2 bytes)
B: -- byte (1 byte)
P: -- pointer (4 bytes or 8 bytes, depending on the OS)

Comment:

177

6.4. C CHAPTER 6. COMMAND REFERENCE

The Option P: behaves the same as L: on 32bit operating systems. But you

should use P: for pointers (VARPTR() etc...) into memory so that it can be trans-

lated from X11-Basic internal 32bit representation to the 64bit adresses on 64it

operating systems. The B: and W: options behave the same as the L: option.

EXAMPLE:

DIM result(100)
LINK #1,"simlib.so"
adr%=SYM_ADR(#1,"CalcZeta")
ret%=CALL(adr%,D:1.2,L:0,P:VARPTR(result(0)))
UNLINK #1

SEE ALSO: CALL, EXEC

*

Function: CALLD()

Syntax: ret=CALLD(adr%[,<parameter-list>])

DESCRIPTION:

Calls a machine code or C subroutine at address <adr%> and returns a floting-

point value. Same as CALL() but returns a floating point value.

178

CHAPTER 6. COMMAND REFERENCE 6.4. C

EXAMPLE:

LINK #1,"libm.so"
adr%=SYM_ADR(#1,"cos")
ret=CALL(adr%,D:1)
UNLINK #1

SEE ALSO: CALL()

*

Function: CALL$()

Syntax: ret$=CALL$(adr%[,<parameter-list>])

DESCRIPTION:

Calls a machine code or C subroutine at address <adr%> and returns data as

a string. Same as CALL() but returns arbitrary data, e.g. from a C-function which

returns a struct.

Comment:

There is no way to determine, how much data the function will return, so the

returned string has a fixed size of 256 bytes. If this is not enough, X11-Basic will

crash. This function is rarely used. Try to avoid it.

SEE ALSO: CALL()

179

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: CARD()

Syntax: a%=CARD(b%)

DESCRIPTION:

Returns lower 16 bits of b%. (same as a%=b% AND (2^16-1))

EXAMPLE:

PRINT CARD(-200) ! Result: 65336

SEE ALSO: BYTE(), WORD(), SWAP()

180

CHAPTER 6. COMMAND REFERENCE 6.4. C

Keyword: CASE

Syntax: CASE <num-expression>[,<num-expression>,...]

DESCRIPTION:

CASE takes a list of expressions to be compared with the expression of the

corresponding SELECT statement.

EXAMPLE:

i=5
SELECT i
CASE 1
PRINT 1
CASE 2,3,4
PRINT "its 2,3, or 4"
CASE 5
PRINT 5
DEFAULT
PRINT "default"

ENDSELECT

SEE ALSO: SELECT, DEFAULT, ENDSELECT

181

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: CBRT()

Syntax: a=CBRT(x)

DESCRIPTION:

The CBRT() function returns the cube root of x. This function cannot fail; every

representable real value has a representable real cube root.

EXAMPLE:

PRINT CBRT(8) ! Result: 2

SEE ALSO: SQRT()

182

CHAPTER 6. COMMAND REFERENCE 6.4. C

Function: CEIL()

Syntax: <num-result>=CEIL(<num-expression>)

DESCRIPTION:

Ceiling function: return smallest integral value not less than argument.

EXAMPLE:

PRINT CEIL(-1.5), CEIL(0.5) ! result: -1 1

SEE ALSO: INT()

183

6.4. C CHAPTER 6. COMMAND REFERENCE

Command: CHAIN

Syntax: CHAIN <file-name>

DESCRIPTION:

CHAIN loads and runs another BASIC program. Global variables will be avail-

able with their current value to the new program, all other variables are erased. If

you want to append another program to the current program (as opposed to eras-

ing the current program and loading a new program), use the MERGE command

instead.

SEE ALSO: LOAD, MERGE, RUN

184

CHAPTER 6. COMMAND REFERENCE 6.4. C

Command: CHDIR

Syntax: CHDIR <path-name>

DESCRIPTION:

CHDIR changes the current working directory to the directory specified in path-

name.

EXAMPLE:

CHDIR "/tmp"

SEE ALSO: MKDIR, RMDIR, DIR$()

185

6.4. C CHAPTER 6. COMMAND REFERENCE

Command: CHMOD

Syntax: CHMOD <file-name>, <mode>

DESCRIPTION:

CHMOD changes the permissions of a file. The new file permissions are spec-

ified in mode, which is a bit mask created by ORing (or adding) together zero or

more of the following:

1 execute/search by others ("search" applies for directories,
and means that entries within the directory can be accessed)

2 write by others
4 read by others
8 execute/search by group

0x010 write by group
0x020 read by group
0x040 execute/search by owner
0x080 write by owner
0x100 read by owner
0x200 sticky bit
0x400 set-group-ID
0x800 set-user-ID

On most operating systems, the permissions are grouped into three levels: The

file owner, the owners group, or all others. So you can specify that this file can

only be written to by the owner, it can be read but not written to by the owners

group, and all other woll have no permission to either read or write to or from the

file. mode=0x20+0x100+0x80

You can also change the owner of that file (mode=0x800+userid) or the group

it belongs to (mode=0x400+groupid). userid and groupid my be between 0 and

1023.

186

CHAPTER 6. COMMAND REFERENCE 6.4. C

EXAMPLE:

CHMOD "/tmp/file",0x1e8

SEE ALSO: OPEN

187

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: CHR$()

Syntax: <string-result> = CHR$(<num-expression>)

DESCRIPTION:

CHR$() returns the character associated with a given ASCII code. If the argu-

ment is in the range of 0-255 it produces exactly one byte.

Character table

032 048 0 064 @ 080 P 096 ‘ 112 p
033 ! 049 1 065 A 081 Q 097 a 113 q
034 " 050 2 066 B 082 R 098 b 114 r
035 # 051 3 067 C 083 S 099 c 115 s
036 $ 052 4 068 D 084 T 100 d 116 t
037 % 053 5 069 E 085 U 101 e 117 u
038 & 054 6 070 F 086 V 102 f 118 v
039 ’ 055 7 071 G 087 W 103 g 119 w
040 (056 8 072 H 088 X 104 h 120 x
041) 057 9 073 I 089 Y 105 i 121 y
042 * 058 : 074 J 090 Z 106 j 122 z
043 + 059 ; 075 K 091 [107 k 123 {
044 , 060 < 076 L 092 \ 108 l 124 |
045 - 061 = 077 M 093] 109 m 125 }
046 . 062 > 078 N 094 ^ 110 n 126 ~
047 / 063 ? 079 O 095 _ 111 o 127

Control codes

00 NUL 08 BS -- Backspace 16 DLE
01 SOH 09 HT -- horizontal TAB 17 DC1 -- XON
02 STX 10 LF -- Newline 18 DC2

188

CHAPTER 6. COMMAND REFERENCE 6.4. C

03 ETX 11 VT 19 DC3 -- XOFF
04 EOT 12 FF -- Form feed 20 DC4
05 ENQ 13 CR -- Carriage Return 21 NAK
06 ACK 14 SO 22 SYN
07 BEL -- Bell 15 SI 23 ETB

24 CAN 32 SP -- Space
25 EM 127 DEL -- Delete
26 SUB
27 ESC28 FS
29 GS
30 RT
31 US

Comment:

You should avoid to pass an argument outside of the range 0-255 for compati-

bility reasons. Currently only the lowest 8 bits are taken, but in future the function

could be extended to also produce unicode charackters (up to three bytes) taking

the unicode values (0-0xffff).

EXAMPLE:

PRINT CHR$(34);"Hello World !";CHR$(34)
Result: "Hello World !"

SEE ALSO: ASC()

189

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: CINT()

Syntax: <num-result>=CINT(<num-expression>)

DESCRIPTION:

CINT() returns the rounded absolute value of its argument prefixed with the sign

of its argument.

EXAMPLE:

PRINT CINT(1.4), CINT(-1.7)
Result: 2, -2

SEE ALSO: INT(), FRAC(), TRUNC(), ROUND()

190

CHAPTER 6. COMMAND REFERENCE 6.4. C

Command: CIRCLE

Syntax: CIRCLE <x>,<y>,<r>[,<w1>,<w2>]

DESCRIPTION:

Draw a circle with actual color (and fillpattern). The x- and y-coordinates of

the center and the radius of the circle are given in screen coordinates and pixels.

Optionally a starting angle <w1> and stop angle <w2> can be passed to draw a

circular arc.

EXAMPLE:

CIRCLE 100,100,50

SEE ALSO: ELLIPSE, COLOR, DEFFILL, PCIRCLE

191

6.4. C CHAPTER 6. COMMAND REFERENCE

Command: CLEAR

Syntax: CLEAR

DESCRIPTION:

Clear all variables and arrays as if they were never used before.

SEE ALSO: NEW

192

CHAPTER 6. COMMAND REFERENCE 6.4. C

Command: CLEARW

Syntax: CLEARW [<num>]

DESCRIPTION:

Clear graphic window. If a number is given, clear window with the number given.

The Window is filled with the background color, which can be specified by COLOR.

EXAMPLE:

foreground=COLOR_RGB(1,1,1) ! white
background=COLOR_RGB(0,0,1) ! blue
COLOR foreground,background
CLEARW
SHOWPAGE

SEE ALSO: CLOSEW, COLOR

193

6.4. C CHAPTER 6. COMMAND REFERENCE

Command: CLIP

Syntax: CLIP x,y,w,h[,ox,oy]

DESCRIPTION:

This command provide the ’Clipping’ function, ie. the limiting of graphic display

within a specified rectangular screen area. The command CLIP defines the clipping

rectangle starting at the upper left coordinates x,y and extends w pixels wide and

h high. The optional additional command parameters ox,oy make it possible to

redefine the origin of the graphic display.

Comment:

This command is still buggy. Do not use it.

EXAMPLE:

CLIP 0,0,100,100,50,50
CIRCLE 0,0,55
SHOWPAGE

SEE ALSO:

194

CHAPTER 6. COMMAND REFERENCE 6.4. C

Command: CLOSE

Syntax: CLOSE [[#]n[,[#]<num-expression>,...]]

DESCRIPTION:

This statement is used to CLOSE one or more OPEN files or other devices. The

parameter expression indicates a device number or file number. If no file or device

numbers are declared all OPEN devices will be closed.

Comment:

All files should be closed before leaving a program to insure that data will not be

lost or destroyed. If a program exit is through END or QUIT, all files will be closed.

If a program is stopped with the STOP command, all open files remain open.

EXAMPLE:

CLOSE #1,#2
CLOSE

SEE ALSO: OPEN, LINK

195

6.4. C CHAPTER 6. COMMAND REFERENCE

Command: CLOSEW

Syntax: CLOSEW [<num>]

DESCRIPTION:

Close graphic window (make it disappear from the screen). If a number is given,

closes window with the number given. The Window will again be opened, when

the next graphic command is executed. This command has no effect on Android.

SEE ALSO: CLEARW

196

CHAPTER 6. COMMAND REFERENCE 6.4. C

Command: CLR

Syntax: CLR <var>[,<var>,...]

DESCRIPTION:

Clear the variables given in the list. Sets specified variables or arrays to 0 or "".

EXAMPLE:

CLR a,t$,i%,b()

SEE ALSO: ARRAYFILL

197

6.4. C CHAPTER 6. COMMAND REFERENCE

Command: CLS

Syntax: CLS

DESCRIPTION:

Clear text screen and move cursor home (upper left corner).

EXAMPLE:

CLS
PRINT "This is now a title line on an empty text screen."

SEE ALSO: PRINT

198

CHAPTER 6. COMMAND REFERENCE 6.4. C

Command: COLOR

Syntax: COLOR <foreground-color>[,<background-color>]

DESCRIPTION:

COLOR sets the foreground color (and optionally the background color) for

graphic output into the graphic window. The color values are dependent of the

color depth of the Screen. Usually the COLOR statement is used together with the

COLOR_RGB() function, so arbitrary colors may be used.

EXAMPLE:

yellow=COLOR_RGB(1,1,0)
blue=COLOR_RGB(0,0,1)
COLOR yellow,blue

SEE ALSO: COLOR_RGB(), LINE

199

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: COLOR_RGB()

Syntax: c%=COLOR_RGB(r,g,b[,a])

DESCRIPTION:

COLOR_GRB() returns a color number for the specified color. The rgb-values

range from 0 (dark) to 1.0 (bright). The returned number depends on the screen

depth of the bitmap used. For 8 bit a color cell is allocated or if there is no free cell,

a color is chosen which is most similar to the specified.

The optional parameter a is the alpha value (0...1), which will be used if it is

supported by the graphics system.

The color numbers may be passed to the COLOR command.

EXAMPLE:

yellow=COLOR_RGB(1,1,0)
COLOR yellow

SEE ALSO: COLOR

200

CHAPTER 6. COMMAND REFERENCE 6.4. C

Variable: COLS

Syntax: n%=COLS

DESCRIPTION:

Returns the number of colums of the text terminal (console).

EXAMPLE:

PRINT COLS, ROWS ! Result: 80 24

SEE ALSO: ROWS, PRINT AT(), CRSCOL, CRSLIN

201

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: COMBIN()

Syntax: <num-result>=COMBIN(<n>,<k>)

DESCRIPTION:

Calculates the number of combinations of <n> elements to the <k>th class with-

out repetitions. Defined as z=n!/((n-k)!*k!).

EXAMPLE:

PRINT COMBIN(49,6) ! result: 13983816

SEE ALSO: FACT(), VARIAT()

202

CHAPTER 6. COMMAND REFERENCE 6.4. C

Function: COMPRESS$()

Syntax: c$=COMPRESS$(a$)

DESCRIPTION:

Performs a lossless compression on the string a$. The algorithm uses run

length encoding in combination with the Burrows-Wheeler transform. The result is

a better compression than p.ex. the algorithm used by gzip. At the moment the

COMPRESS$() function is identical to following combination:

b$=ARIE$(RLE$(MTFE$(BWTE$(RLE$(a$)))))

SEE ALSO: UNCOMPRESS$(), BWTE$(), RLE$(), MTFE$()

203

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: CONJ()

Syntax: x#=CONJ(z#)

DESCRIPTION:

Returns the complex conjugate value of z#. That is the value obtained by

changing the sign of the imaginary part.

EXAMPLE:

PRINT CONJ(1-2i) Result: (1+2i)

SEE ALSO: IMAG(), REAL()

204

CHAPTER 6. COMMAND REFERENCE 6.4. C

Command: CONNECT

Syntax: CONNECT #n,server$,port%

DESCRIPTION:

Initiate a connection on a socket.

The file number #n must refer to a socket, which must have been created by

OPEN. If the socket is of type "U" or "V" then the server$ address is the address

to which packets are sent by default, and the only address from which packets are

received. If the socket is of type "S","A","C","B" or "Z", this call attempts to make

a connection to another socket. The other socket is specified by server$, which is

an address in the communications space of the socket (usually an IP address or a

Bluetooth device address).

Generally, connection-based protocol sockets may successfully connect only

once; connectionless protocol sockets may use connect multiple times to change

their association.

Comment:

This function does work with internet connections, however it is not fully docu-

mented and the implementation for Bluetooth and USB devices is not yet finished.

Please refer to the example programs.

SEE ALSO: OPEN, CLOSE, SEND, RECEIVE

205

6.4. C CHAPTER 6. COMMAND REFERENCE

Command: CONTINUE

Syntax: CONT
CONTINUE

DESCRIPTION:

This command has two different use cases. If used in direct mode, it continues

the execution of a program after interruption (e.g. with STOP).

If used inside a SELECT/ENDSELECT block, it branches to the line following

the next CASE or DEFAULT directive. If no CASE or DEFAULT statement is found,

it branches to ENDSELECT.

EXAMPLE:

INPUT a
SELECT a
CASE 1
PRINT 1
CONTINUE

CASE 2
PRINT "1 or 2"

CASE 3
PRINT 3

DEFAULT
PRINT "default"

ENDSELECT

SEE ALSO: STOP, SELECT, CASE, DEFAULT, BREAK

206

CHAPTER 6. COMMAND REFERENCE 6.4. C

Command: COPYAREA

Syntax: COPYAREA x,y,w,h,xd,yd

DESCRIPTION:

Copies a rectangular screen sections given by x,y,w,h to a destination at xd,yd.

x,y top left corner of source rectangle
w,h width & height " " "
xd,yd destination x and y coordinates

This command is very fast compared to the GET and PUT commands because the

whole data transfer takes place on the X-client (this means on the screen directly

without datatransfer to the program).

SEE ALSO: GET, PUT, GRAPHMODE

207

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: COS()

Syntax: b=COS(x)
z#=COS(x#)

DESCRIPTION:

Returns the Cosine of the expression in radians. Also returns the complex

cosine of a complex expression. The complex cosine function is defined as:

cos(z#) := (exp(1i*z#)+exp(-1i*z#))/2

EXAMPLE:

PRINT COS(0) ! Result: 1
PRINT COS(0+1i) ! Result: 1.543080634815+0i

SEE ALSO: SIN(), ASIN()

*

Function: COSH()

208

CHAPTER 6. COMMAND REFERENCE 6.4. C

Syntax: b=COSH(x)
z#=COSH(x#)

DESCRIPTION:

The cosh() function returns the hyperbolic cosine of x, which is defined math-

ematically as (exp(x)+exp(-x))/2 Also returns the complex hyperbolic cosine of a

complex number or expression.

SEE ALSO: COS(), ACOSH(), EXP()

209

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: CRC()

Syntax: <num-result>=CRC(t$[,oc])

DESCRIPTION:

Calculates a 32 bit checksum on the given string. Optionally another checksum

can be passed as oc. If oc is passed, the checksum will be updated with the given

string.

SEE ALSO: LEN(), HASH$()

210

CHAPTER 6. COMMAND REFERENCE 6.4. C

Function: CRC16()

Syntax: <num-result>=CRC(t$)

DESCRIPTION:

Calculates a 16 bit checksum with CRC-CCITT on the given string.

SEE ALSO: CRC(), HASH$()

211

6.4. C CHAPTER 6. COMMAND REFERENCE

Variable: CRSCOL, CRSLIN

Syntax: CRSCOL
CRSLIN

DESCRIPTION:

Returns current cursor line and column.

SEE ALSO: PRINT AT()

212

CHAPTER 6. COMMAND REFERENCE 6.4. C

Variable: CTIMER

Syntax: CTIMER

DESCRIPTION:

Returns CPU-Clock in seconds. This timer returns the amount of time this

application was running. It is most useful for benchmark applications on multi-

tasking environments.

Comment:

The UNIX standard allows for arbitrary values at the start of the program; sub-

tract the value returned from a CTIMER at the start of the program to get maximum

portability. It is also not guaranteed, that the values will not repeat itself. On a 32-bit

system this function will return the same value approximately every 72 minutes.

EXAMPLE:

t=CTIMER
FOR i=0 TO 100000
NOOP

NEXT i
ref=(CTIMER-t)/100000
print "Ref=",str$(ref*1000,5,5);" ms"

SEE ALSO: TIMER, STIMER

213

6.4. C CHAPTER 6. COMMAND REFERENCE

Command: CURVE

Syntax: CURVE x0,y0,x1,y1,x2,y2,x3,y3

DESCRIPTION:

The CURVE command draws a cubic Bezier-curve. The Bezier-curve starts at

x0,y0 and ends at x3,y3. The curve at x0,y0 is at a tangent with a line from x0,y0

to x1,y1; and at x3,y3 is at a tangent with a line between x3,y3 and x2,y2.

SEE ALSO: LINE, POLYLINE

214

CHAPTER 6. COMMAND REFERENCE 6.4. C

Function: CVA()

Syntax: <array-result>=CVA(<string-expression>)

DESCRIPTION:

Returns array reconstructed from the string. This function is the complement of

MKA$().

EXAMPLE:

a()=CVA(t$)

SEE ALSO: ASC(), CVF(), CVL(), MKA$()

215

6.4. C CHAPTER 6. COMMAND REFERENCE

Function: CVD()

Syntax: <num-result>=CVD(<string-expression>)

DESCRIPTION:

Returns the binary double value of the first 8 characters of string. This function

is the complement of MKD$().

SEE ALSO: ASC(), CVF(), CVL(), MKD$()

*

Function: CVF()

Syntax: <num-result>=CVF(<string-expression>)

DESCRIPTION:

Returns the binary float value of the first 4 characters of a string. This function

is the complement of MKF$().

SEE ALSO: ASC(), CVD(), CVL(), MKF$()

216

CHAPTER 6. COMMAND REFERENCE 6.4. C

*

Function: CVI()

Syntax: <num-result>=CVI(<string-expression>)

DESCRIPTION:

Returns the binary integer value of the first 2 characters of a string. This func-

tion is the complement of MKI$(). Null string returns 0, For strings with only one

byte length the ASCII value of that charackter will be returned.

SEE ALSO: ASC(), CVF(), CVL(), MKI$()

*

Function: CVL()

Syntax: <num-result>=CVL(<string-expression>)

DESCRIPTION:

Returns the binary long integer value of the first 4 characters of a string. This

function is the complement of MKL$(). Null string returns 0.

217

6.4. C CHAPTER 6. COMMAND REFERENCE

SEE ALSO: ASC(), CVF(), CVI(), MKL$()

*

Function: CVS()

Syntax: <num-result>=CVS(<string-expression>)

DESCRIPTION:

Returns the binary float value of the first 4 characters of a string. This function

is the complement of MKS$().

SEE ALSO: CVF(), MKS$()

218

CHAPTER 6. COMMAND REFERENCE 6.5. D

6.5 D

219

6.5. D CHAPTER 6. COMMAND REFERENCE

Command: DATA

Syntax: DATA [<const>[,<const>, ...]]

DESCRIPTION:

The DATA statement is used to hold information that may be read into variables

using the READ statement. DATA items are a list of string or numeric constants

separated by commas and may appear anywhere in a program. No comment

statement may follow the DATA statement on the same line. Items are read in

the order they appear in a program. RESTORE will set the pointer back to the

beginning of the first DATA statement.

Alphanumeric string information in a DATA statement need not be enclosed in

quotes if the first character is not a number, math sign or decimal point. Lead-

ing spaces will be ignored (unless in quotes). DATA statements can be included

anywhere within a program and will be read in order. Strings not in quotes will be

capitalzed.

SEE ALSO: READ, RESTORE

220

CHAPTER 6. COMMAND REFERENCE 6.5. D

Variable: DATE$

Syntax: d$=DATE$

DESCRIPTION:

Returns the system date. The format is DD.MM.YYYY.

EXAMPLE:

PRINT TIME$,DATE$! 14:49:44 11.03.2014

SEE ALSO: TIME$

221

6.5. D CHAPTER 6. COMMAND REFERENCE

Command: DEC

Syntax: DEC <num-variable>

DESCRIPTION:

Decrement Variable a. The result is a=a-1.

SEE ALSO: INC

222

CHAPTER 6. COMMAND REFERENCE 6.5. D

Function: DECLOSE$()

Syntax: a$=DECLOSE$(t$)

DESCRIPTION:

Removes enclosing characters from string t$. De-closing a string, following

pairs are recognized:

"" , ’’ , <> , () , {} , [], ´‘

If the string was not enclosed with one of these pairs of characters, the string will

be returned unmodified.

EXAMPLE:

PRINT DECLOSE$("[Hello]")
Result: Hello

SEE ALSO: ENCLOSE$()

223

6.5. D CHAPTER 6. COMMAND REFERENCE

Function: DECRYPT$()

Syntax: t$=DECRYPT$(message$,key$[,typ%])

DESCRIPTION:

Decrypts a message, which has been encrypted with ENCRYPT$() before.

Comment:

This function is only available if libgcrypt was compiled in.

SEE ALSO: ENCRYPT$()

224

CHAPTER 6. COMMAND REFERENCE 6.5. D

Keyword: DEFAULT

Syntax: SELECT ... DEFAULT ... ENDSELECT

DESCRIPTION:

DEFAULT is a label within the SELECT...ENDSELECT construction.

See SELECT.

SEE ALSO: SELECT

225

6.5. D CHAPTER 6. COMMAND REFERENCE

Command: DEFFILL

Syntax: DEFFILL <col>,<style>,<pattern>

DESCRIPTION:

Sets the fill color and fill pattern for solid graphics elements like PBOX, PCIR-

CLE etc...

<col> - not used at the moment
<style> - 0=empty, 1=filled, 2=dots, 3=lines, 4=user (not used)
<pattern> - 24 dotted and 12 lined patterns can by chosen.

SEE ALSO: DEFLINE, DEFTEXT, PBOX

226

CHAPTER 6. COMMAND REFERENCE 6.5. D

Command: DEFFN

Syntax: DEFFN <func-name>[$][(<var list>)]=<expression>

DESCRIPTION:

This statement allows the user to define a single line inline function that can

thereafter be called by @name. This is a handy way of adding functions not pro-

vided in the language. The expression may be a numeric or string expression and

must match the type the function name would assume if it was a variable name.

The name must adhere to variable name syntax.

EXAMPLES:

DEFFN av(x,y)=SQR(x^2+y^2)
a=@av(b,c) ! call av
DEFFN add$(a$,b$)=a$+b$

SEE ALSO: FUNCTION, GOSUB

227

6.5. D CHAPTER 6. COMMAND REFERENCE

Command: DEFLINE

Syntax: DEFLINE <style>,<thickness>[,<begin_s>,<end_s>]

DESCRIPTION:

Sets line style, width and type of line start and end.

<style> -- determines the style of line:
1 Solid line
2 Long dashed line
3 Dotted
4 Dot-dashed
5 Dashed
6 Dash dot dot ..
7 Long Dash dot dot ..

0x11-0xffffffff User defined (not used)

<thickness> -- sets line width in pixels. A thickness greater than or equal
1 is considered a wide line, and the value 0 is a special case,

considered a thin line. Wide and thin lines use different drawing
algorithms. Styles and different start and end symbols are only
possible for wide lines. Also it is possible that the last point
of the line is treated differently, meaning, sometimes it is not
drawn with wide lines.

<begin_s>,<end_s> -- The start and end symbols are defined
by the last parameter, and can be:

0 Square
1 Arrow
2 Round

The userdefined style of the line defines a dash-pattern in the nibbles:

228

CHAPTER 6. COMMAND REFERENCE 6.5. D

0x11 means: 1 pixel dash, followed by 1 pixel gap.
0x61 means: 1 pixel dash, followed by 6 pixel gap.

0x6133 means: 3 pixel dash, followed by 3 pixel gap, followed by a
1 pixel dash, followed by 6 pixel gap.

Comment:

Start and end symbols are not implemented in the framebuffer (Android) ver-

sions (yet).

SEE ALSO: LINE, DEFFILL

229

6.5. D CHAPTER 6. COMMAND REFERENCE

Command: DEFMARK

Syntax: DEFMARK <color>,<style>,<size>

DESCRIPTION:

Sets color, type and size of the corner points to be marked using the command

POLYMARK. The color value will be ignored. The color of the points can be set

with the COLOR command.

The following types are possible:

0=point
1=dot (circle)
2=plus sign
3=asterisk
4=square
5=cross
6=hash
8=filled circle
9=filled square

SEE ALSO: POLYMARK, DEFLINE, COLOR

230

CHAPTER 6. COMMAND REFERENCE 6.5. D

Command: DEFMOUSE

Syntax: DEFMOUSE <style>

DESCRIPTION:

Chooses a pre-defined mouse form. The following mouse forms are available :

0=arrow 1=expanded (rounded) X
2=busy bee 3=hand, pointing finger
4=open hand 5=thin crosswire
6=thick crosswire 7=bordered crosswire

and about 100 other X-Window or operating system specific symbols.

SEE ALSO: HIDEM, SHOWM

231

6.5. D CHAPTER 6. COMMAND REFERENCE

Command: DEFTEXT

Syntax: DEFTEXT flag%,width,height,angle

DESCRIPTION:

Defines the style, rotation and size of the line font used by the LTEXT command.

COLOR and linestyles (e.g. thickness) can be set with COLOR and DEFLINE.

flag% : text style - 0=monospace, 1=normal
angle : rotation in degrees
width and height : size of text in %

(100% corresponds to 100 Pixel font)

EXAMPLE:

DEFTEXT 0,0.05,0.1,0 ! Size of the charackters is approx 10x5 pixels
LTEXT 100,100,"Hello"

SEE ALSO: LTEXT, TEXT, COLOR, DEFLINE

232

CHAPTER 6. COMMAND REFERENCE 6.5. D

Function: DEG()

Syntax: d=DEG(x)

DESCRIPTION:

Converts x from radians to degrees.

EXAMPLE:

PRINT DEG(PI) ! Result: 180

SEE ALSO: RAD()

233

6.5. D CHAPTER 6. COMMAND REFERENCE

Command: DELAY

Syntax: DELAY <num-of-seconds>

DESCRIPTION:

Same as PAUSE. Delays program execution by <num-of-seconds> seconds.

SEE ALSO: PAUSE

234

CHAPTER 6. COMMAND REFERENCE 6.5. D

Function: DET()

Syntax: d=DET(a())

DESCRIPTION:

Calculates the determinant of a (square) (two-dimensional) matrix a().

The determinant provides important information about a matrix of coefficients of

a system of linear equations. The system has a unique solution exactly when the

determinant is nonzero. When the determinant is zero there are either no solutions

or many solutions.

EXAMPLE:

a()=[3,7,3,0;0,2,-1,1;5,4,3,2;6,6,4,-1]
PRINT DET(a()) ! Result: 105

SEE ALSO: SOLVE(), INV()

235

6.5. D CHAPTER 6. COMMAND REFERENCE

Function: DEVICE()

Syntax: d=DEVICE(filename$)

DESCRIPTION:

Returns the device id corresponding to a file.

236

CHAPTER 6. COMMAND REFERENCE 6.5. D

Command: DIM

Syntax: DIM <arrayname>(<indexes>)[,<arrayn>(<ind>),...]

DESCRIPTION:

Sets the dimensions of an array. An array variable can store many values ad-

dessed by an index or a tuple of indicies. Arrays can be re-dimensioned any time.

Comment:

The argument determines the number of entries in the array. The index count

starts with 0. So DIM a(10) will produce the elements a(0), a(1), ... a(8), and a(9)

(10 elements). Note: a(10) does not exist here!

EXAMPLES:

DIM a(10)
DIM b(100,100)
DIM c$(20,30,405,6)

SEE ALSO: ERASE, DIM?()

*

237

6.5. D CHAPTER 6. COMMAND REFERENCE

Function: DIM?()

Syntax: <num-result>=DIM?(<array-name>())

DESCRIPTION:

Determines the number of elements in an array.

EXAMPLE:

DIM a(10,10)
PRINT DIM?(A()) Result: 100

SEE ALSO: DIM

238

CHAPTER 6. COMMAND REFERENCE 6.5. D

Function: DIR$()

Syntax: p$=DIR$(0)

DESCRIPTION:

DIR$() returns the path of the current directory. The optional argument is ig-

nored.

SEE ALSO: CHDIR, ENV$()

239

6.5. D CHAPTER 6. COMMAND REFERENCE

Command: DIV

Syntax: DIV var,n

DESCRIPTION:

Divides the value of var by n. Same as var=var/n but faster.

SEE ALSO: ADD, MUL, SUB

*

Function: DIV()

Syntax: c=DIV(a,b)

DESCRIPTION:

The function DIV() divides the first value by second and returns the result.

SEE ALSO: ADD(), MUL(), SUB()

240

CHAPTER 6. COMMAND REFERENCE 6.5. D

Command: DO

Syntax: DO ... LOOP

DESCRIPTION:

DO implements an unconditional loop. The lines between the DO line and the

LOOP line form the loop body. The unconditional DO...LOOP block simply loops

and the only way out is by EXIT IF or BREAK (or GOTO).

EXAMPLE:

DO
INPUT a$
EXIT IF a$=""

LOOP

SEE ALSO: LOOP, EXIT IF, BREAK, WHILE

241

6.5. D CHAPTER 6. COMMAND REFERENCE

Keyword: DOWNTO

Syntax: FOR ... DOWNTO ...

DESCRIPTION:

Used within a FOR..NEXT loop. DOWNTO indicates that the loop should count

backwards. e.g.:

FOR c=100 DOWNTO 1

is the same as

FOR c=100 TO 1 STEP -1

EXAMPLE:

FOR i=10 DOWNTO 0
PRINT i

NEXT i

SEE ALSO: FOR, TO, NEXT, STEP

242

CHAPTER 6. COMMAND REFERENCE 6.5. D

Function: DPEEK()

Syntax: value%=DPEEK(adr%)

DESCRIPTION:

Reads 2 bytes from address adr% (a word).

EXAMPLE:

t$=MKI$(4711)
PRINT DPEEK(VARPTR(t$))

SEE ALSO: PEEK(), LPEEK(), DPOKE, MKI$()

*

Command: DPOKE

Syntax: DPOKE adr%,value%

243

6.5. D CHAPTER 6. COMMAND REFERENCE

DESCRIPTION:

Writes value% as a 2 byte word to address adr%.

EXAMPLE:

t$=SPACE$(2)
DPOKE VARPTR(t$),4711
PRINT CVI(t$)

SEE ALSO: PEEK(), LPEEK(), POKE, DPEEK(), CVI()

244

CHAPTER 6. COMMAND REFERENCE 6.5. D

Command: DRAW

Syntax: DRAW [x1,y1][TO x2,y2][TO x3,y3][TO ...]

DESCRIPTION:

Draws points and connects two or more points with straight lines. DRAW x,y is

the same as PLOT x,y. DRAW TO x,y connects the point to the last set point (set

by PLOT, LINE or DRAW).

SEE ALSO: LINE, PLOT

245

6.5. D CHAPTER 6. COMMAND REFERENCE

Command: DUMP

Syntax: DUMP [t$][,#n]

DESCRIPTION:

Query Information about stored Variables, names:

DUMP -- Lists all used variable names
DUMP "@" -- list of functions and procedures
DUMP ":" -- list of all labels
DUMP "#" -- list of open Files
DUMP "K" -- list of all X11-Basic commands
DUMP "F" -- list of all X11-Basic functions

If a open file channel is giveb, DUMP outputs to that file.

EXAMPLE:

OPEN "O",#1,"debug.txt"
PRINT #1,"Variables:"
DUMP "",#1
PRINT #1,"Labels:"
DUMP ":",#1
CLOSE #1

SEE ALSO: LIST, PLIST, HELP

246

CHAPTER 6. COMMAND REFERENCE 6.6. E

6.6 E

247

6.6. E CHAPTER 6. COMMAND REFERENCE

Command: ECHO

Syntax: ECHO ON
ECHO OFF

DESCRIPTION:

Switches the trace function on or off. This causes each command to be listed

on the stdout.

SEE ALSO: TRON, TROFF

248

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: EDIT

Syntax: EDIT

DESCRIPTION:

EDIT invokes the standard editor (given by the environment variable $(EDITOR)

to edit the BASIC program in memory.

The command invokes the following actions:

SAVE "name.~~~" writes the BASIC-program into a temporary file,
calls the editor ’$EDITOR’

waits until editor is closed
NEW clears internal values
LOAD "name.~~~" reads the BASIC-program from the temporary file.

You may want to SAVE the file before using the EDIT command if the file has not

yet been saved in order to choose a name at that occasion. The default name is

"name. ". This command requires that the editor installed on your system does

not detach itself from the calling process or EDIT will not recognize any changes

(in that case, use LOAD to load the modified source code).

SEE ALSO: LOAD, SAVE

249

6.6. E CHAPTER 6. COMMAND REFERENCE

Command: ELLIPSE

Syntax: ELLIPSE <x>,<y>,<a>, [,<w0>,<w1>]

DESCRIPTION:

Draws an ellipse at <x>,<y>, having <a> as horizontal radius and vertical

radius The optional angles <w0> and <w1> give start and end angles in degrees,

to create an elliptical arc.

SEE ALSO: PELLIPSE, CIRCLE

250

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: ELSE, ELSE IF

Syntax: ELSE
ELSE IF <expression>

DESCRIPTION:

ELSE IF <expression> introduces another condition block and the unqualified

ELSE introduces the default condition block in a multi-line IF statement.

EXAMPLE:

IF (N=0)
PRINT "0"

ELSE IF (N=1)
PRINT "1"

ELSE
PRINT "Out of range"

ENDIF

SEE ALSO: IF, ENDIF

251

6.6. E CHAPTER 6. COMMAND REFERENCE

Function: ENCLOSE$()

Syntax: e$=ENCLOSE$(t$[,c$])

DESCRIPTION:

Encloses a string. With a character or a pair of characters. The default pair is

"".

EXAMPLE:

PRINT enclose$("abc","()") ! Result: (abc)
PRINT enclose$("Hello","-") ! Result: -Hello-

SEE ALSO: DECLOSE$()

252

CHAPTER 6. COMMAND REFERENCE 6.6. E

Function: ENCRYPT$()

Syntax: e$=ENCRYPT$(t$,key$[,typ%])

DESCRIPTION:

This Function will encrypt a string with a given key. Typ% specifies, which

algorithm is used. If typ% is not specified, the blowfish algorithm is used.

The encrypted message can be decrypted again using DECRYPT$() and the

same key (or, in case it was encrypted with a public key, it must be decrypted

with the corresponding private key.) The encrypted message has always the same

length than the original message.

Following algorithms can be used:

Typ%=
1 ! IDEA

2 ! 3DES
3 ! CAST5
4 ! BLOWFISH
5 ! SAFER_SK128
6 ! DES_SK
7 ! AES
8 ! AES192
9 ! AES256
10 ! TWOFISH
301 ! ARCFOUR Fully compatible with RSA’s RC4 (tm).
302 ! DES this is single key 56 bit DES.
303 ! TWOFISH128
304 ! SERPENT128
305 ! SERPENT192
306 ! SERPENT256
307 ! RFC2268_40 Ron’s Cipher 2 (40 bit).

253

6.6. E CHAPTER 6. COMMAND REFERENCE

308 ! RFC2268_128 Ron’s Cipher 2 (128 bit).
309 ! SEED 128 bit cipher described in RFC4269.
310 ! CAMELLIA128
311 ! CAMELLIA192
312 ! CAMELLIA256

501 ! RSA
516 ! ELG_E
517 ! DSA
520 ! ELG
801 ! ECDSA
802 ! ECDH

Comment:

This function is only available if libgcrypt was compiled in.

SEE ALSO: COMPRESS$(), DECRYPT$()

254

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: END

Syntax: END

DESCRIPTION:

END terminates program execution. The interpreter switches to interactive

mode.

SEE ALSO: STOP, QUIT

255

6.6. E CHAPTER 6. COMMAND REFERENCE

Command: ENDFUNCTION

Syntax: ENDFUNCTION

DESCRIPTION:

Terminates a user defined function block. The function itself must return a value

with a RETURN command.

SEE ALSO: FUNCTION, RETURN

256

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: ENDIF

Syntax: ENDIF

DESCRIPTION:

ENDIF terminates a multi-line IF block.

SEE ALSO: IF, ELSE, ELSE IF

257

6.6. E CHAPTER 6. COMMAND REFERENCE

Command: ENDPROCEDURE

Syntax: ENDPROCEDURE

DESCRIPTION:

Terminates a user defined procedure. It has the same effect as RETURN.

SEE ALSO: RETURN, ENDFUNCTION

258

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: ENDSELECT

Syntax: ENDSELECT

DESCRIPTION:

Terminates a SELECT block.

SEE ALSO: SELECT, DEFAULT, CASE

259

6.6. E CHAPTER 6. COMMAND REFERENCE

Command: ENV$()

Syntax: a$=ENV$(name$)

DESCRIPTION:

ENV$() returns the current value of the specified "environment variable". Envi-

ronment variables are string variables maintained by the operating system. These

variables typically are used to save configuration information. Use the SETENV

command to set the values of environment variables.

Comment:

In Unix and Unix-like systems, the names of environment variables are case-

sensitive.

EXAMPLE:

PRINT ENV$("USER") ! Result: hoffmann
PRINT ENV$("HOST") ! may return the name of the computer
PRINT ENV$("PWD") ! may return the current working directory

SEE ALSO: SETENV

260

CHAPTER 6. COMMAND REFERENCE 6.6. E

Function: EOF()

Syntax: a=EOF(#<dev-number>)

DESCRIPTION:

EOF() checks the end-of-file status of a file previously opened for reading by

the OPEN command. It returns -1 (TRUE) if the end of file has been reached,

otherwise null (FALSE).

EXAMPLE:

OPEN "I",#1,"filename"
WHILE NOT EOF(#1)

LINEINPUT #1,a$
WEND
CLOSE #1

SEE ALSO: OPEN

261

6.6. E CHAPTER 6. COMMAND REFERENCE

Operator: EQV

Syntax: a=<num-expression> EQV <num-expression>

DESCRIPTION:

The operator EQV (equivalence) produces a TRUE result only if the arguments

of both are either TRUE or both FALSE. (same as NOT(x XOR y)) and ((A IMP B)

AND (B IMP A)).

table: A | B | A EQV B
-----+-----+----------
-1 | -1 | -1
-1 | 0 | 0
0 | -1 | 0
0 | 0 | -1

EXAMPLE:

PRINT BIN$((15 EQV 6) and 15,4)
Result: 0110

SEE ALSO: TRUE, FALSE, NOT, XOR, IMP

262

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: ERASE

Syntax: ERASE <array>()[,<array>(),<variable>...]

DESCRIPTION:

un-DIMs an array and removes it from the internal variables. Or remove a vari-

able out of the memory. (This command need never be used in X11-Basic. Don’t

use it. An array can easily re-dimensioned with another DIM statement.)

SEE ALSO: DIM, CLR

263

6.6. E CHAPTER 6. COMMAND REFERENCE

Variable: ERR

Syntax: ERR

DESCRIPTION:

Returns the error code of latest occurred error.

SEE ALSO: ERROR, ERR$()

264

CHAPTER 6. COMMAND REFERENCE 6.6. E

Function: ERR$()

Syntax: a$=ERR$(<error-nr>)

DESCRIPTION:

Returns, as a string containing the X11-Basic error message which belongs to

the error number.

EXAMPLE:

PRINT "X11-Basic Error messages:"
FOR i=0 TO 255
PRINT i,ERR$(i)

NEXT i

SEE ALSO: ERR

265

6.6. E CHAPTER 6. COMMAND REFERENCE

Command: ERROR

Syntax: ERROR <error-number>

DESCRIPTION:

ERROR simulates an error, i.e., displays the message appropriate for a given

error code or calls the error handler if one was installed via the ON ERROR com-

mand. This command is helpful in writing ON ERROR GOSUB routines that can

identify errors for special treatment and then ERROR ERR (i.e. default handling)

for all others.

EXAMPLE:

> ERROR 245
Line -1: * Timeout

SEE ALSO: ON ERROR GOSUB, ERR

266

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: EVAL

Syntax: EVAL a$

DESCRIPTION:

Evaluate or execute X11-Basic command, which is in a$.

EXAMPLE:

b$="a=5"
a$="print a"
EVAL a$
EVAL b$
EVAL a$
&a$! short form

SEE ALSO: EVAL()

*

Function: EVAL()

267

6.6. E CHAPTER 6. COMMAND REFERENCE

Syntax: a=EVAL(b$)

DESCRIPTION:

Evaluate expression, which is in b$.

EXAMPLE:

b$="sin(0.5*exp(0.001))"
result=EVAL(b$)

result=&b$! short form

SEE ALSO: EVAL

268

CHAPTER 6. COMMAND REFERENCE 6.6. E

Function: EVEN()

Syntax: e%=EVEN(<num-expression>)

DESCRIPTION:

Returns true (-1) if the number is even, else false (0).

SEE ALSO: ODD()

269

6.6. E CHAPTER 6. COMMAND REFERENCE

Command: EVENT

Syntax: EVENT typ,[x,y,xr,yr,s,k,ks,t$,timestamp]

DESCRIPTION:

EVENT waits for an event of the graphics i/o system. This very powerful com-

mand can wait for a big variaty of different user events which can occur.

Following events can be watched for:

- A mouse button is pressed or released,
- A key on the keyboard is pressed or released,
- The mouse pointer has moved to a new position.
- The graphics window was clicked to be opened,

closed or iconified.

typ determines which of the events have occured:

typ=2 --- key pressed
typ=3 --- key released
typ=4 --- mouse button pressed
typ=5 --- mouse button released
typ=6 --- mouse motion event
typ=10 --- Window move event
typ=13 --- Window resize event

x,y --- Mouse position relative to window
xr,yr --- Mouse position relative to screen or

relative movement
s --- State of the Alt, Caps, Shift keys
k --- state of the mouse buttons or keycode
ks --- scancode of key
t$ --- Character of pressed key
timestamp --- timestamp of the time the event occured (in ms)

270

CHAPTER 6. COMMAND REFERENCE 6.6. E

SEE ALSO: KEYEVENT, MOUSEEVENT, MOTIONEVENT, EVENT?()

271

6.6. E CHAPTER 6. COMMAND REFERENCE

Command: EVENT?()

Syntax: a=EVENT?(mask%)

DESCRIPTION:

Returns TRUE if a graphics event is pending which matches the types given by

mask.

mask= 1 --- key press event
mask= 2 --- key release event
mask= 4 --- mouse button press event
mask= 8 --- mouse button release event
mask= 0x10 --- mouse enters window event
mask= 0x20 --- mouse leaves window event
mask= 0x40 --- mouse motion event
mask= 0x40000 --- window resize events
mask=0x200000 --- window focus change events

SEE ALSO: EVENT, KEYEVENT, MOUSEEVENT, MOTIONEVENT, INP?()

272

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: EVERY

Syntax: EVERY <seconds>, <procedure>
EVERY CONT
EVERY STOP

DESCRIPTION:

The command EVERY causes the procedure to be called every <seconds>

seconds. Using EVERY STOP, the calling of a procedure can be prevented. With

EVERY CONT this is again allowed.

Comment:

EVERY CONT and EVERY STOP are currently not implemented. Please also

read the comments about AFTER.

EXAMPLE:

EVERY 1,progress
q=10000000
FOR p=0 TO q
a=(1+a)/2

NEXT p
AFTER 1,progress ! To stop the progress
PAUSE 3 ! will be interrupted after 1 second
PRINT "done -->";a
END
PROCEDURE progress
PRINT p/q;"% done."

RETURN

273

6.6. E CHAPTER 6. COMMAND REFERENCE

SEE ALSO: AFTER

274

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: EXEC

Syntax: EXEC name$[,commandline$[,environment$]]
EXEC action$[,data$[,extra$]]

DESCRIPTION:

Calls an operating system service by name. The behavior is different on differ-

ent operating systems.

The first argument for EXEC is the name of a file or a service that is to be

executed.

If name$ is not an android-intent, the system searches for an executable file if

the specified filename does not contain a slash (/) character.

The file is sought in the colon-separated list of directory pathnames specified in

the PATH environment variable. If this variable isn’t defined, the path list defaults

to the current directory followed by the list of directories "/bin:/usr/bin".

If the specified filename includes a slash character, then PATH is ignored, and

the file at the specified pathname is executed.

The filename must be either a binary executable, or a script starting with a line

of the form:

#! interpreter [optional-arg]

In case, name$ is not an android intent, EXEC replaces the current process

image with a new process image and execute it. So EXEC will not return to the

X11-Basic program.

The following string argument describes a list of one or more arguments avail-

able to the executed program. The Arguments must be separated by a newline

character (CHR$(10)).

The second string argument allows the caller to specify the environment of

the executed program. The environment consists of a list of strings of format

VAR=CONTENT, separated by a newline character (CHR$(10)).

275

6.6. E CHAPTER 6. COMMAND REFERENCE

If this argument is not present, EXEC takes the environment for the new process

image from the calling process.

On Android:

If the name starts with "android.intent", a special operating system service,

called INTENT is called. Following intents are currently available:

android.intent.action.EDIT --- call a text editor
android.intent.action.SEND --- call email client
android.intent.action.VIEW --- call browser
android.intent.action.DIAL --- call phone

Execution will continue in X11-Basic as soon as the intent has finished. If you

need a return value to find out if the intent was successful, use EXEC().

EXAMPLE:

EXEC "env","-u"+chr$(10)+"A","HOME=/tmp"+chr$(10)+"A=0"
EXEC "android.intent.action.VIEW",\

"text/html:http://x11basic.sourceforge.net/"
EXEC "android.intent.action.EDIT","text/plain:new.bas"
EXEC "android.intent.action.SEND","message/rfc822:", \
"android.intent.extra.EMAIL=my@email.adr"+chr$(10)+\
"android.intent.extra.SUBJECT=Hello"

SEE ALSO: SYSTEM, EXEC(), CALL, SHELL

*

Function: EXEC()

276

CHAPTER 6. COMMAND REFERENCE 6.6. E

Syntax: a%=EXEC(name$[,commandline$[,environment$]])
r%=EXEC(action$[,data$[,extra$]])

DESCRIPTION:

Does the same as the command EXEC, but returns a return value. This is either

the value passed to the system exit() function or the result of an intent.

EXAMPLE:

a=EXEC("android.intent.action.EDIT","text/plain:new.bas")
if a=-1
print "OK."

else if a=0
print "CANCELED"

endif
b=EXEC("/usr/bin/busybox","/usr/bin/busybox"+chr$(10)+"-c","HOME=/tmp")

if b<>0
print "program exited with return code: ";b

endif

SEE ALSO: CALL(), EXEC, SYSTEM$()

277

6.6. E CHAPTER 6. COMMAND REFERENCE

Function: EXIST()

Syntax: a=EXIST(filename$)

DESCRIPTION:

Returns TRUE (-1) if the file exists on the file system.

SEE ALSO: OPEN

278

CHAPTER 6. COMMAND REFERENCE 6.6. E

Command: EXIT

Syntax: EXIT

DESCRIPTION:

EXIT will either exit a loop, return from a procedure or subroutine, quit a SE-

LECT/ENDSELECT structure, or quit the interpreter. WHILE, REPEAT, DO and

FOR loops can be aborted prematurely with the EXIT command. Here it has the

same function as BREAK. EXIT leaves the current (innermost) loop immediately.

Outside a loop, but insidde a procedure or function, that procedure or function is

left, like with RETURN. Outside any procedure or function or loop, or invoked from

the direct mode EXIT has the same effect like QUIT.

SEE ALSO: EXIT IF, BREAK, RETURN, QUIT

279

6.6. E CHAPTER 6. COMMAND REFERENCE

Command: EXIT IF

Syntax: EXIT IF <expression>

DESCRIPTION:

The innermost loop will be left if the expression is true. WHILE, REPEAT, DO

and FOR loops can be aborted prematurely with the EXIT IF statement. EXIT IF

leaves the current (innermost) loop immediately, if the expression after EXIT IF is

not FALSE (not null).

Comment:

EXIT IF cannot be used in direct mode.

SEE ALSO: DO, WHILE, FOR, REPEAT, BREAK, IF, EXIT

280

CHAPTER 6. COMMAND REFERENCE 6.6. E

Function: EXP()

Syntax: a=EXP(b)
a#=EXP(b#)

DESCRIPTION:

EXP() returns the exponential value of its argument (e to the specified power).

EXAMPLE:

PRINT EXP(1) ! Result: 2.718281828459
PRINT EXP(1+1i) ! Result: (1.468693939916+2.287355287179i)

SEE ALSO: LOG(), LN(), LOGB()

281

6.6. E CHAPTER 6. COMMAND REFERENCE

Function: EXPM1()

Syntax: a=EXPM1(x)

DESCRIPTION:

Returns a value equivalent to ‘exp(x)-1’. It is computed in a way that is accurate

even if the value of x is near zero – a case where ‘exp(x)-1’ would be inaccurate

due to subtraction of two numbers that are nearly equal.

EXAMPLE:

PRINT EXPM1(1) ! Result: 1.718281828459

SEE ALSO: LOG1P(), EXP()

282

CHAPTER 6. COMMAND REFERENCE 6.7. F

6.7 F

283

6.7. F CHAPTER 6. COMMAND REFERENCE

Function: FACT()

Syntax: a&=FACT(n%)

DESCRIPTION:

Calculates the factorial (n!). The factorial of a non-negative integer n, denoted

by n!, is the product of all positive integers less than or equal to n. The value of 0!

is 1, according to the convention.

EXAMPLE:

PRINT FACT(5) ! Result: 120
PRINT FACT(10) ! Same as 10*9*8*...*2*1
Result: 3628800
PRINT FACT(50) ! Same as 50*49*48*...*2*1
Result: 30414093201713378043612608166064768844377641568960512000000000000

SEE ALSO: COMBIN(), VARIAT(), GAMMA()

284

CHAPTER 6. COMMAND REFERENCE 6.7. F

Variable: FALSE

Syntax: FALSE

DESCRIPTION:

Constant 0. This is simply another way of expressing the value of a condition

when it is false and is equal to zero.

SEE ALSO: TRUE

285

6.7. F CHAPTER 6. COMMAND REFERENCE

Variable: FATAL

Syntax: FATAL

DESCRIPTION:

Returns the value 0 or -1 according to the type of error. On normal errors the

function returns 0. The value -1 is returned on all errors where the address of the

last executed command is no longer known. In this case a RESUME is not possible

anymore.

Comment:

This variable is currently not used in X11-Basic.

SEE ALSO: RESUME

286

CHAPTER 6. COMMAND REFERENCE 6.7. F

Command: FFT

Syntax: FFT a()[,flag%]

DESCRIPTION:

FFT calculates the discrete Fourier Transformation of a real periodic sequence

stored in the float array a(). If flag% is <>0 the back transform is calculated. The

result replaces the contents of a(). The method used is most efficient (=fast) when

DIM?(a()) is a product of small primes.

This transform is un-normalized since a call of FFT followed by a call of FFT ,-1

will multiply the input sequence by DIM?(a()).

The output consists of an array with the Fourier coefficients as follows: For

n=DIM?(a()) even and for i = 0,...,n-1 a(i) = a(0)+(-1)^(i)*a(n-1) plus the sum from

k=2 to k=n/2 of

2*a(2*k-1)*cos((k-1)*i*2*pi/n) -2*a(2*k)*sin((k-1)*i*2*pi/n)

for n odd and for i = 0,...,n-1

a(i) = a(0) plus the sum from k=2 to k=(n+1)/2 of

2*a(2*k-1)*cos((k-1)*i*2*pi/n) -2*a(2*k)*sin((k-1)*i*2*pi/n)

Comment:

Two succeeding FFT (or FFT ,-1) calculations are faster if they use the same

size of the array.

EXAMPLE:

l=2^10 ! It is faster to use a power of two
DIM a(l)
FOR i=0 TO l-1

287

6.7. F CHAPTER 6. COMMAND REFERENCE

a(i)=200/100*@si(3*i/512*2*pi)+i/100*sin(20*i/512*2*pi)
NEXT i
SCOPE a(),1,-10,300 ! Draw the function
FFT a() ! Do the Fourier transformation
’ Normalize
FOR i=0 TO l-1
a(i)=a(i)/SQRT(l)

NEXT i
’ Clear some of the frequencies
FOR i=4 TO 86
a(i)=0

NEXT i
FFT a(),-1 ! Do a back transformation
SCOPE a(),0,-10/SQRT(l),300 ! Draw the result (scaling=normalization)

DEFFN si(x)=x mod pi

SEE ALSO: FFT()

*

Function: FFT

Syntax: b()=FFT(a()[,flag%])

DESCRIPTION:

FFT calculates the discrete Fourier Transformation of a real periodic sequence

stored in the float array a(). If flag% is <>0 the back transform is calculated. Unlike

the command FFT, FFT() returns an array with the Fourier transform leaving the

original array untouched.

SEE ALSO: FFT()

288

CHAPTER 6. COMMAND REFERENCE 6.7. F

Function: FIB()

Syntax: w&=FIB(i%)

DESCRIPTION:

Returns the i’th Fibonacci number.

Comment:

This function works only in the interpreter and only when used in a direct as-

signment to a big integer variable.

EXAMPLES:

w&=FIB(100) --> Result: 354224848179261915075

SEE ALSO: LUCNUM()

289

6.7. F CHAPTER 6. COMMAND REFERENCE

Function: FILEEVENT$

Syntax: t$=FILEEVENT$

DESCRIPTION:

Returns a string with event information on watched files and directories. If the

string is empty, no events are pending. The events consist of 3 characters followed

by a blank and optionally followed by a filename. The first three characters have

the following meaning:

1st: "d" means: the file is a directory
2nd: "X" created, "O" OPENed, "C" closed, "M" moved,

"D" deleted
3rd: "r" read, "w" write, "a" attributes were changed

When monitoring a directory, the events above can occur for files in the directory,

in which case the name field in the returned string identifies the name of the file

within the directory.

EXAMPLE:

WATCH "/tmp"
DO

a$=FILEEVENT$
IF LEN(a$)
PRINT a$

ENDIF
LOOP

SEE ALSO: WATCH

290

CHAPTER 6. COMMAND REFERENCE 6.7. F

Command: FILESELECT

Syntax: FILESELECT title$,path$,default$,file$

DESCRIPTION:

Opens a fileselect box and lets the user browse through the file system and

select one file.

title$ gives a short title to be placed in the fileselect box. Such as "Select a

.DOC file to open...".

path$ if none specified then the default path is assumed. The pathname should

include a complete path specification including a drive letter (except for UNIX file

system), colon, path, and filemask. The filemask may (and usually does) include

wildcard characters.

default$ contains the name of the file to appear in the selection line. ("" for no

default).

FILESELECT returns the selected filename (including path) in file$. If CANCEL

is selected an empty string is returned.

EXAMPLE:

FILESELECT "LOAD File","./*.dat","input.dat",file$

SEE ALSO: XLOAD, XRUN, FSEL_INPUT()

291

6.7. F CHAPTER 6. COMMAND REFERENCE

Command: FILL

Syntax: FILL x,y[,bc]

DESCRIPTION:

Fills a bordered area with a color commencing at the co-ordinates ’x,y’. If a

border color (bc) is specified, the fill stops at boundaries with this color. If no

border color is given, the fill will stop at any other color than the one of the starting

coordinate. The fill color can be chosen with the command COLOR.

Comment:

The FILL command does not work when the linewidth is set to anything other

than 1 pixel. Please use DEFLINE to set the linewidth back to 1 before using FILL

in that case.

SEE ALSO: COLOR, DEFLINE

292

CHAPTER 6. COMMAND REFERENCE 6.7. F

Command: FIT

Syntax: FIT x(),y(),yerr?,??[,??,??,??,??,??,??]

DESCRIPTION:

Fits a user defined function to a set of data points, also using errorbars in y.

Comment:

TODO: The command needs to be described.

SEE ALSO: FIT_LINEAR, FIT_POLY

293

6.7. F CHAPTER 6. COMMAND REFERENCE

Command: FIT_LINEAR

Syntax: FIT_LINEAR x(),y(),n%,a,b[,da,db,chi2,dy(),dx(),q]

DESCRIPTION:

FIT_LINEAR calculates a linear regression to fit a straight line f(x)=a+b*x to

the data x(),y(). n%=number of points. The fitted values are stored in a and b. If

specified, the uncertainty of a and b are stored in da,db and chi2. Optional errors

of the datapoints in x and y can be given by dy(),dx(). In this case q has a meaning.

EXAMPLE:

n=400
DIM x(n),y(n)
FOR i=0 TO n-1
x(i)=(i+RANDOM(10))/400
y(i)=(1*i+GASDEV(1)*20+50-i/30*i/30+(400-MOUSEY))/400

NEXT i
FIT_LINEAR x(),y(),,a,b,da,db,chi
PRINT "chi2=";chi
da=da*SQRT(chi/(DIM?(x())-2))
db=db*SQRT(chi/(DIM?(x())-2))

PRINT a;"+/-";da
PRINT b;"+/-";db

SEE ALSO: FIT, FIT_POLY

294

CHAPTER 6. COMMAND REFERENCE 6.7. F

Command: FIT_POLY

Syntax: FIT_POLY x(),y(),dy(),n%,a(),m%

DESCRIPTION:

FIT_POLY fits a polynom of order m% to n% datapoints given by x() and y(). If

present, dy() specifies the errors in y. The polynomial coefficients are returned in

a() such that

f(x)=a(0)+a(1)*x+a(2)*x^2+...

Comment:

For higher orders m%>3 of the polynom, the range of x() must be small (in

the order of 1) otherwise the algorithm can become unstable because of the high

powers.

No information about the quality of the fit is returned.

SEE ALSO: FIT, FIT_LINEAR, SOLVE

295

6.7. F CHAPTER 6. COMMAND REFERENCE

Function: FIX()

Syntax: a=FIX(x)

DESCRIPTION:

Returns the integer of x after it has been rounded. FIX is identical to the function

TRUNC and complements FRAC.

SEE ALSO: INT(), TRUNC(), FRAC(), ROUND()

296

CHAPTER 6. COMMAND REFERENCE 6.7. F

Function: FLOOR()

Syntax: a=FLOOR(x)

DESCRIPTION:

Round x down to the nearest integer.

SEE ALSO: INT(), FIX()

297

6.7. F CHAPTER 6. COMMAND REFERENCE

Command: FLUSH

Syntax: FLUSH [#<device-name>]

DESCRIPTION:

Flushes the output to the file or console. Usually a line is printed when the

newline character is encountered. To enforce output of everything which has been

printed so far use FLUSH.

SEE ALSO: PRINT

298

CHAPTER 6. COMMAND REFERENCE 6.7. F

Command: FOR

Syntax: FOR <var>=<sexpr> TO <texpr> [STEP <incr>]
FOR <var>=<sexpr> DOWNTO <texpr> [STEP <incr>]

DESCRIPTION:

FOR initiates a FOR...NEXT loop with the specified variable <var> initially set to

<sexpr> and incrementing in <incr> steps (default is 1). The statements between

FOR and NEXT are repeated until the variable value reaches or steps over <texpr>.

Comment:

The body of the FOR loop is excecuted always at least once.

EXAMPLE:

FOR n=2 TO 0 STEP -1
PRINT n,

NEXT n
RESULT: 2 1 0

SEE ALSO: NEXT, DOWNTO, STEP

299

6.7. F CHAPTER 6. COMMAND REFERENCE

Function: FORK()

Syntax: a%=FORK()

DESCRIPTION:

FORK() creates a child process of the running task (usually the X11-Basic in-

terpreter with the Basic program). After the fork, both tasks will be run in parallel.

On success, the PID of the child process is returned in the parent’s thread of

execution, and a 0 is returned in the child’s thread of execution. On failure, a -1 will

be returned in the parent’s context, no child process will be created.

EXAMPLE:

a=FORK()
IF a=-1
PRINT "error"
QUIT

ELSE IF a=0
PRINT "I am child"

ELSE
PRINT "I am parent. My child is PID=";a

ENDIF

SEE ALSO: SPAWN

300

CHAPTER 6. COMMAND REFERENCE 6.7. F

Function: FORM_ALERT()

Syntax: ret=FORM_ALERT(button,string$)

DESCRIPTION:

This function creates an alert box, and returns the number of the button pressed.

Unlike ALERT, it is not possible to use text inputs here.

The parameters have the following meaning:

button = number of the default button (0= none).
string$ = string defining the message in the alert.

It needs to have a special format:
"[i][Message][Buttons]"

Where i is the required alert symbol number. Lines and buttons are separated by

the "|" character. –> see ALERT.

FORM_ALERT returns the number of the selected Button.

EXAMPLE:

~FORM_ALERT(1,"[0][This is my message!][OK]")

SEE ALSO: ALERT

301

6.7. F CHAPTER 6. COMMAND REFERENCE

Function: FORM_CENTER()

Syntax: ~FORM_CENTER(tree%,x,y,w,h)

DESCRIPTION:

Centers the object tree and returns its coordinates.

tree% is the address of the object tree.

OUTPUTS: x,y coordinates of top left corner w,h form width and height. The

returned value can safely be ignored.

EXAMPLE:

PROCEDURE info
LOCAL adr%,x,y,w,h,ret%
adr%=RSRC_GADDR(0,2)
~FORM_CENTER(adr%,x,y,w,h)
~FORM_DIAL(0,x,y,w,h,x,y,w,h)
~FORM_DIAL(1,x,y,w,h,x,y,w,h)
~OBJC_DRAW(adr%,0,-1,0,0)
ret%=FORM_DO(adr%)
~FORM_DIAL(2,x,y,w,h,x,y,w,h)
~FORM_DIAL(3,x,y,w,h,x,y,w,h)
IF ret%=35
DPOKE adr%+ret%*24+10,0

ENDIF
RETURN

SEE ALSO: OBJC_DRAW()

302

CHAPTER 6. COMMAND REFERENCE 6.7. F

Function: FORM_DIAL()

Syntax: ret%=FORM_DIAL(flag,x1,y1,w1,h1,x2,y2,w2,h2)

DESCRIPTION:

Release (or reserve) a rectangular screen area and draw an expanding/shrinking

rectangle. Returns 0 if an error occurred.

flag= function
0 reserve a display area.
1 draw expanding box.
2 draw shrinking box.
3 release reserved display area.

x1,y1 top left corner of rectangle at min size
w1,h1 width & height " " " " "
x2,y2 top left corner of rectangle at max size
w2,h2 width & height " " " " "

EXAMPLE:

PROCEDURE show_tabelle
LOCAL ox,oy
ox=(bx+bw-532)/2
oy=(by+bh-242)/2
~FORM_DIAL(0,260,20,30,20,ox,oy,532,242)
~FORM_DIAL(1,260,20,30,20,ox,oy,532,242)
@tabelle(ox,oy,532,242)
MOUSEEVENT
~FORM_DIAL(2,260,20,30,20,ox,oy,532,242)
~FORM_DIAL(3,260,20,30,20,ox,oy,532,242)

303

6.7. F CHAPTER 6. COMMAND REFERENCE

RETURN

SEE ALSO: SGET, SPUT, GET, PUT, COPYAREA

304

CHAPTER 6. COMMAND REFERENCE 6.7. F

Function: FORM_DO()

Syntax: ret%=FORM_DO(tree%[,obj%])

DESCRIPTION:

FORM_DO() manages an object tree given by the address tree% and interacts

with the user until an object with EXIT or TOUCHEXIT status is clicked on.

FORM_DO returns the number of the object whose clicking or double clicking

caused the function to end. If it was a double click, bit 15 will be set.

The optional parameter obj% specifies the number of the first editable field ob-

ject (if there is one).

EXAMPLE:

PROCEDURE info
LOCAL adr%,x,y,w,h,ret%
adr%=RSRC_GADDR(0,2)
~FORM_CENTER(adr%,x,y,w,h)
~FORM_DIAL(0,x,y,w,h,x,y,w,h)
~FORM_DIAL(1,x,y,w,h,x,y,w,h)
~OBJC_DRAW(adr%,0,-1,0,0)
ret%=FORM_DO(adr%)
~FORM_DIAL(2,x,y,w,h,x,y,w,h)
~FORM_DIAL(3,x,y,w,h,x,y,w,h)
IF ret%=35
DPOKE adr%+ret%*24+10,0

ENDIF
RETURN

SEE ALSO: OBJC_DRAW()

305

6.7. F CHAPTER 6. COMMAND REFERENCE

Function: FRAC()

Syntax: a=FRAC(b)

DESCRIPTION:

FRAC() returns the fractional part of its argument.

EXAMPLE:

PRINT FRAC(-1.234)
Result: -0.234

SEE ALSO: INT(), CINT(), TRUNC(), ROUND()

306

CHAPTER 6. COMMAND REFERENCE 6.7. F

Command: FREE

Syntax: FREE adr%

DESCRIPTION:

Frees a previously allocated memory block.

SEE ALSO: MALLOC()

307

6.7. F CHAPTER 6. COMMAND REFERENCE

Function: FREEFILE()

Syntax: a%=FREEFILE()

DESCRIPTION:

FREEFILE() returns the first free filenumber available or -1 on error. the file

numbers can be used together with other file functions like OPEN, LINK etc...

SEE ALSO: OPEN

308

CHAPTER 6. COMMAND REFERENCE 6.7. F

Function: FSFIRST$()

Syntax: a$=FSFIRST$(path$[,pattern$,attr$])

DESCRIPTION:

FSFIRST$() searches for the first file in a filesystem of a given path path$,

given match pattern pattern$ and given attributes. pattern$ can be a file name

mask; default is "*". attr$ can be:

"d" only list directories,
"a" also list hidden files,
"f" list regular files,
"u" list usb devices,
"b" list visible bluetooth devices nearby.

The attributes "d" and "f" can be combined ("df") so directories as well as normal

files are listed. If no attributes are given, the default is "df".

If found, the filename and attributes are returned in a$. If no file can be found,

an empty string is returned. When path$ is empty, an empty string is returned.

Otherwise the returned string consists of two words. E.g. "- filename.dat". The first

word lists the attributes, the second word is the filename. Attributes can be "d" is a

directory, "s" symbolic link, "-" a regular file.

EXAMPLE:

’ list files and directories in /tmp/
a$=FSFIRST$("/tmp","*.dat")
WHILE LEN(a$)
PRINT WORD$(a$,2)
IF LEFT$(a$)="d"
PRINT "is a directory."

ENDIF

309

6.7. F CHAPTER 6. COMMAND REFERENCE

a$=FSNEXT$()
WEND

Comment:

FSFIRST$() can also be used to scan for BLUETOOTH or USB devices. When

scanning USB or Bluetooth devices additional information is returned. The at-

tributes "u" and "b" cannot be combined with other attributes.

EXAMPLE:

’ Scan for USB devies around:
a$=FSFIRST$("","*","u")
WHILE LEN(a$)
PRINT a$
@decode(a$)
a$=FSNEXT$()

WEND
QUIT
PROCEDURE decode(a$)
PRINT " USB bus/device: ";WORD$(a$,1)
PRINT " USB vendor-ID/product-ID: ";WORD$(a$,2)
PRINT " Manufacturer: ";WORD$(a$,3)
PRINT " Product: ";WORD$(a$,4)
PRINT " Serial-Nr: ";WORD$(a$,5)
PRINT " Number of configurations: ";WORD$(a$,6)

RETURN

EXAMPLE:

’ Scan for bluetooth devies around:
a$=FSFIRST$("","*","b")
WHILE LEN(a$)
PRINT a$
PRINT "Adress: ";WORD$(a$,1)
PRINT "Name: ";WORD$(a$,1)
a$=FSNEXT$()

310

CHAPTER 6. COMMAND REFERENCE 6.7. F

WEND

SEE ALSO: FSNEXT$()

311

6.7. F CHAPTER 6. COMMAND REFERENCE

Function: FSNEXT$()

Syntax: a$=FSNEXT$()

DESCRIPTION:

FSNEXT$() searches for the next file in the filesystem specified by FSFIRST$().

When no more files can be found, an empty string is returned. Otherwise the

returned string has the same meaning as the one returned by FSFIRST().

EXAMPLE:

a$=FSFIRST$("/tmp","*.dat")
WHILE LEN(a$)
PRINT WORD$(a$,2)
IF LEFT$(a$)="d"
PRINT "is a directory."

ENDIF
a$=FSNEXT$()

WEND

SEE ALSO: FSFIRST$()

312

CHAPTER 6. COMMAND REFERENCE 6.7. F

Command: FULLW

Syntax: FULLW [[#]n]

DESCRIPTION:

Enlarges the window with the number n to full screen size.

SEE ALSO: OPENW, CLOSEW, MOVEW, SIZEW, TOPW, BOTTOMW

313

6.7. F CHAPTER 6. COMMAND REFERENCE

Command: FUNCTION

Syntax: FUNCTION <name>[$][(<expression> [, ...])]

DESCRIPTION:

FUNCTION starts a user-defined multi-line function that calculates and returns

a value from an optional list of parameters. The FUNCTION is called by using the

function name preceded by a @ in an expression. The function return type can

either be a numerical value or a string. In the latter case, the function name must

end with the "$" precision qualifier. (No Integer type functions with % are allowed.)

A FUNCTION returns a result with the RETURN command inside the function.

In a function, RETURN can be used several times, with IF or the like. A function

cannot be terminated without a RETURN command being before the ENDFUNC

command. In a function name ending with the $ character the function returns a

string result.

All variables declared inside the FUNCTION block are global variables unless

you declare them as local with the LOCAL command. The FUNCTION name may

be followed by a list of parameter variables representing the values and variables in

the calling line. Variables in the calling line reach the FUNCTION "by-value" unless

the VAR keyword is used in the calling line. In that case, the variable is passed

"by-reference" to the FUNCTION so that the FUNCTION "gets" the variable and

not only its value. Variables passed "by-reference" can be changed by the FUNC-

TION. The FUNCTION block is terminated by an ENDFUNCTION statement which

resumes execution of the calling expression. Unlike a PROCEDURE subroutine, a

FUNCTION must return a value.

314

CHAPTER 6. COMMAND REFERENCE 6.7. F

EXAMPLE:

FUNCTION theta(x,a)
IF x>a
RETURN 0

ELSE
RETURN a

ENDIF
ENDFUNCTION

SEE ALSO: ENDFUNCTION, RETURN, DEFFN, LOCAL, PROCEDURE

315

6.8. G CHAPTER 6. COMMAND REFERENCE

6.8 G

316

CHAPTER 6. COMMAND REFERENCE 6.8. G

Function: GAMMA()

Syntax: b=GAMMA(a)

DESCRIPTION:

Returns a value given by the gamma function. The Gamma function is defined

by

GAMMA(x) = integral from 0 to infinity of t^(x-1) e^-t dt

It is defined for every real number except for non-positive integers. For non-

negative integral m one has

GAMMA(m+1) = m!

and, more generally, for all x:

GAMMA(x+1) = x * GAMMA(x)

Furthermore, the following is valid for all values of x outside the poles:

GAMMA(x)*GAMMA(1-x)=PI/SIN(PI*x)

EXAMPLE:

PRINT GAMMA(4) ! Result: 6
PRINT GAMMA(0) ! Result: inf

SEE ALSO: SIN(), COS(), LGAMMA()

317

6.8. G CHAPTER 6. COMMAND REFERENCE

Function: GASDEV()

Syntax: b=GASDEV(seed)

DESCRIPTION:

Returns a random number which is Gauss distributed. The numbers range from

minus infinity to infinity but values around 0 are much more likely. The argument is

taken as a seed for the random generator.

SEE ALSO: RND()

318

CHAPTER 6. COMMAND REFERENCE 6.8. G

Function: GCD()

Syntax: c&=GCD(a&,b&)

DESCRIPTION:

Returns the greatest common divisor of a and b. The result is always positive

even if one or both input operands are negative. Except if both inputs are zero;

then this function defines GCD(0,0)=0.

EXAMPLE:

PRINT GCD(120,200000) ! Result: 40

SEE ALSO: LCM()

319

6.8. G CHAPTER 6. COMMAND REFERENCE

Command: GET

Syntax: GET x,y,w,h,var$[,bcolor]

DESCRIPTION:

GET puts a section of the graphic window or screen into a string variable (x,y,w,h

define a rectangular portion of the screen). The coordinates must not lay outside

of the screen. If the parameter bcolor is given, this color will be used as a trans-

parency color to the bitmap. If no bcolor is given, no transparency will be created.

The stored graphic can be put back on the screen with PUT.

Comment:

The content of the string is bitmapdata. If saved into a file, the File will be in a

common file format (currently .BMP 32bit-RGBA).

EXAMPLE:

GET 100,100,20,20,t$
PUT 200,200,t$! Put that portion at a different position

SEE ALSO: PUT, COPY_AREA, SGET

320

CHAPTER 6. COMMAND REFERENCE 6.8. G

Function: GET_COLOR()

Syntax: col=GET_COLOR(r,g,b)

DESCRIPTION:

GET_COLOR() returns a color number for the specified color. The rgb-values

range from 0 (dark) to 65535 (bright). The returned number depends on the screen

depth. For 8 bit palette systems a color cell is allocated or if there is no free cell, a

color is chosen which is most similar to the specified one. The color numbers may

be passed to the COLOR command.

Comment:

GET_COLOR does not support the rgba formt. Instead COLOR_RGB() should

be used.

EXAMPLE:

yellow=GET_COLOR(65535,65535,0)
COLOR yellow

Comment:
This function should not be used anymore. Use COLOR_RGB() instead.

SEE ALSO: COLOR, COLOR_RGB()

321

6.8. G CHAPTER 6. COMMAND REFERENCE

Command: GET_GEOMETRY

Syntax: GET_GEOMETRY n,x%,y%,w%,h%

DESCRIPTION:

GET_GEOMETRY returns the size of the window or screen. n is the number

of the window. x%,y%,w%,h% take the return values. Usually only w% (width in

pixels) and h% (height in pixels) are of interest. The window needed to be opened

before this command can be used. A SHOWPAGE will make sure, that the screen

or window is allocated.

Comment:

If this command is used on Android as one of the very first commands, a PAUSE

0.04 before will make sure, that the screen of the app has settled before the dimen-

sions are taken.

EXAMPLE:

SHOWPAGE
GET_GEOMETRY ,x,y,w,h

SEE ALSO: SHOWPAGE

322

CHAPTER 6. COMMAND REFERENCE 6.8. G

Command: GET_LOCATION

Syntax: GET_LOCATION lat,lon,alt[,bea,acc,spd,tim[,p$]]

DESCRIPTION:

GET_LOCATION returns various data from the location device. The location

device can be a GPS or any other service which returns geo-information. The

GPS needs to be turned on with GPS ON before.

Return values:

lat -- lattitude in degrees
lon -- longitude in degrees
alt -- altitude in meters
bea -- bearing
acc -- accuracy
spd -- speed
tim -- time
p$ -- provider name

Comment:

Works only on Android devices.

EXAMPLE:

GET_LOCATION x,y,a

323

6.8. G CHAPTER 6. COMMAND REFERENCE

SEE ALSO: GPS, GPS_LON, GPS_LAT, GPS_ALT

324

CHAPTER 6. COMMAND REFERENCE 6.8. G

Command: GET_SCREENSIZE

Syntax: GET_SCREENSIZE x%,y%,w%,h%

DESCRIPTION:

GET_SCREENSIZE returns the size of the screen. This is the area where a

window can be placed.

EXAMPLE:

GET_SCREENSIZE x,y,w,h

SEE ALSO: GET_GEOMETRY, MOVEW

325

6.8. G CHAPTER 6. COMMAND REFERENCE

Function: GLOB()

Syntax: a=GLOB(name$,pattern$[,flags%])

DESCRIPTION:

GLOB() checks if name$ matches the wildcard pattern pattern$ and gives -1

(TRUE) in that case, else 0 (FALSE).

A wildcard pattern typically contains one or more of the characters "?", "*" or "[".
* A "?" (not between brackets) matches any single character.

* A "*" (not between brackets) matches any string, including the empty string.

* An expression "[...]" where the first character after the leading "[" is not an "!"

matches a single character, namely any of the characters enclosed by the brackets.

The string enclosed by the brackets cannot be empty; therefore "]" can be allowed

between the brackets, provided that it is the first character. (Thus, "[][!]" matches

the three characters "[", "]" and "!".)

There is one special convention: two characters separated by "-" denote a

range. (Thus, "[A-Fa-f0-9]" is equivalent to "[ABCDEFabcdef0123456789]".) One

may include "-" in its literal meaning by making it the first or last character between

the brackets. (Thus, "[]-]" matches just the two characters "]" and "-", and "[–0]"
matches the three characters "-", ".", "0", since "/" cannot be matched.)

An expression "[!...]" matches a single character, namely any character that is

not matched by the expression obtained by removing the first "!" from it. (Thus,

"[!]a-]" matches any single character except "]", "a" and "-".)

One can remove the special meaning of "?", "*" and "[" by preceding them by

a backslash, or by enclosing them in quotes. Between brackets these characters

stand for themselves. Thus,

"[[?*\]"

matches the four characters "[", "?", "*" and backslash.

The kind of check can be specified with the flags% parameter. The flags% pa-

rameter can be a combination (+ or OR) of following values with following meaning:

326

CHAPTER 6. COMMAND REFERENCE 6.8. G

flags%
0 -- default, no extras
1 -- name$ is treated as a filename, this means that a slash

in the string is mathced only with a slash in the
pattern and not by an asterisk or a questionmark.

2 -- treat backslashes as special escape characters
4 -- special treatment of ’.’, this means a leading period in

the string has to be matched exactly by a period in the
pattern.

8 -- just check path of file name name$, this means the
pattern is considered to be matched if it matches an
initial segment of the string which is followed by a
slash.

16 -- The pattern is matched case-insensitively.

If the flag%=1 is set, the pattern matching is applied on each of the components of

a pathname separately. In this case a ’/’ in a pathname cannot be matched by a ’?’

or ’*’ wildcard, or by a range like "[.-0]".
If the flag%=1+4 is set, if a filename starts with a ’.’, this character must be

matched explicitly.

EXAMPLES:

GLOB("abcd","abc?") Result: -1
GLOB("abcd","*") -1
GLOB("abc","ab??") 0
GLOB("SA33333","*a[0-9]*",16) -1
GLOB("folder/testme.bas","*.bas",1) 0
GLOB(".testme.bas","*.bas",1) -1
GLOB(".testme.bas","*.bas",1+4) 0
GLOB(".testme.bas",".*.bas",1+4) -1

SEE ALSO: INSTR(), RINSTR(), SPLIT, REGEXP(), MATCH()

327

6.8. G CHAPTER 6. COMMAND REFERENCE

Command: GOSUB ABBREV. @

Syntax: GOSUB <procedure-name>[(<parameterlist>)]

DESCRIPTION:

GOSUB initiates a jump to the procedure specified after GOSUB. The code

reached that way must end with a RETURN statement which returns control to the

calling line.

<parameterlist> contains expressions which are passed by value to local vari-

ables to the procedure. Variables can also be passed by reference (see the VAR

statement). It is possible to call further procedures whilst in a procedure. It is even

possible to call the procedure one is in at the time (recursive call).

EXAMPLES:

GOSUB testproc
@calcvac(12,s,4,t$)

SEE ALSO: PROCEDURE, RETURN, SPAWN, GOTO, EVERY, AFTER, VAR

328

CHAPTER 6. COMMAND REFERENCE 6.8. G

Command: GOTO

Syntax: GOTO <label-name>

DESCRIPTION:

Allows an unconditional jump to a label.

A label must be defined at the beginning of a line and must end in a colon.

Comment:

You should not jump into a procedure or FOR-NEXT loop. If you need to jump

out of a loop it is better to use BREAK or EXIT IF.

EXAMPLE:

GOTO here
PRINT "never"
here:
PRINT "ever"

SEE ALSO: GOSUB, BREAK, EXIT IF

329

6.8. G CHAPTER 6. COMMAND REFERENCE

Command: GPRINT

Syntax: GPRINT [[AT(),TAB(),SPC(),COLOR()]a${;’,}
GPRINT [a$;b;const;USING;...{;’,}]

DESCRIPTION:

The GPRINT statement writes all its arguments to the graphic window. It uses

the same syntax as PRINT. Unlike PRINT the output goes to the graphic window,

where a VT100-Terminal is emulated.

Comment:

On Android PRINT and GPRINT share the same output screen, but use dif-

ferent terminals. This can lead to a mixture of characters on the screen. Here

do not use both, PRINT and GPRINT. The text size of the GPRINT output can be

influenced by SETFONT.

There is no INPUT for GPRINT. You would have to program it yourself using

KEYEVENT.

EXAMPLE:

GPRINT CHR$(27);"[2J"; ! Clear the graphics screen (like CLS for PRINT)
GPRINT AT(1,1);"This is a demo: ";1.23456 USING "##.##"
GPRINT "some more ...";
GPRINT " and more...";
GPRINT COLOR(43,35);" even color does work!"
SHOWPAGE

330

CHAPTER 6. COMMAND REFERENCE 6.8. G

SEE ALSO: PRINT, TEXT, SETFONT

331

6.8. G CHAPTER 6. COMMAND REFERENCE

Command: GPIO

Syntax: GPIO n,v

DESCRIPTION:

Sets the nth GPIO to output direction and value v.

The pin numbers follow the wirig Pi pin numbering

n=0 -->GPIO 17
1 18
2 27
3 22
4 23
5 24
6 25
7 4
8 2
9 3
10 8
11 7
12 10
13 9
14 11
15 14
16 15

21 5
22 6
23 13
24 19
25 26

332

CHAPTER 6. COMMAND REFERENCE 6.8. G

26 12
27 16
28 20
29 21
30 0
31 1

SEE ALSO: GPIO?, GPIO()

333

6.8. G CHAPTER 6. COMMAND REFERENCE

Variable: GPIO?

Syntax: a=GPIO?

DESCRIPTION:

This system variable GPIO? is 0 if no general purpose input/output (GPIO) in-

terface is a available on this hardware platform, otherwise the number of usable

GPIO channels is returned. This variable is useful to detect, if the program is

running on a Raspberry Pi.

SEE ALSO: GPS?, SENSOR?, GPIO_SET, GPIO()

334

CHAPTER 6. COMMAND REFERENCE 6.8. G

Function: GPIO()

Syntax: a=GPIO(n)

DESCRIPTION:

Readout the n-th value of the general purpose input/output (GPIO) channel.

Usually the return values are 0 or 1. The channel is set to input.

SEE ALSO: GPS, SENSOR, SENSOR?, ANDROID?, GPIO

335

6.8. G CHAPTER 6. COMMAND REFERENCE

Command: GPS

Syntax: GPS ON
GPS OFF

DESCRIPTION:

Switches the GPS (Global positioning System receiver) on or off.

Comment:

If switched on this usually drains more power from the battery.

SEE ALSO: GPS?, GPS_ALT, GPS_LAT, GPS_LON, SENSOR

336

CHAPTER 6. COMMAND REFERENCE 6.8. G

Variable: GPS?

Syntax: a=GPS?

DESCRIPTION:

This system variable is 0 (FALSE) if no gps receiver is available on this hardware

platform.

SEE ALSO: GPS, GPS_ALT, GPS_LAT, GPS_LON, SENSOR

337

6.8. G CHAPTER 6. COMMAND REFERENCE

Variable: GPS_ALT

Syntax: a=GPS_ALT

DESCRIPTION:

This system variable returns the measured altitude from the GPS in meters.

SEE ALSO: GPS, GPS_LAT, GPS_LON

*

Variable: GPS_LAT

Syntax: a=GPS_LAT

DESCRIPTION:

This system variable returns the measured latitude from the GPS in degrees.

SEE ALSO: GPS, GPS_ALT, GPS_LON

*

338

CHAPTER 6. COMMAND REFERENCE 6.8. G

Variable: GPS_LON

Syntax: a=GPS_LON

DESCRIPTION:

This system variable returns the measured longitude from the GPS in degrees.

SEE ALSO: GPS, GPS_ALT, GPS_LAT

339

6.8. G CHAPTER 6. COMMAND REFERENCE

Command: GRAPHMODE

Syntax: GRAPHMODE n

DESCRIPTION:

Sets the graphic mode:

n=0 default
n=1 replace
n=2 transparent
n=3 xor
n=4 reverse transparent

Comment:

GRAPHMODE does not yet work on all implmentations of X11-Basic. And it

has limited effects (usually only on TEXT and GPRINT).

SEE ALSO: GOLOR_RGB(), TEXT, GPRINT

340

CHAPTER 6. COMMAND REFERENCE 6.8. G

Function: GRAY()

Syntax: a%=GRAY(<num-expression>)

DESCRIPTION:

This function calculates the Gray-code of a given positive integer number. If the

number is negative, the inverse Graycode is calculated.

EXAMPLE:

PRINT GRAY(34) ! Result: 51

341

6.9. H CHAPTER 6. COMMAND REFERENCE

6.9 H

342

CHAPTER 6. COMMAND REFERENCE 6.9. H

Function: HASH$()

Syntax: h$=HASH$(t$[,typ%])

DESCRIPTION:

Executes a hash function on the data contained in t$. Depending on typ% the

hash function used is:

Typ%=1 ! MD5 (default)
2 ! SHA1
3 ! RMD160
5 ! MD2
6 ! TIGER/192
7 ! HAVAL, 5 pass, 160 bit.
8 ! SHA256
9 ! SHA384
10 ! SHA512
11 ! SHA224

301 ! MD4
302 ! CRC32
303 ! CRC32_RFC1510
304 ! CRC24_RFC2440
305 ! WHIRLPOOL
306 ! TIGER fixed.
307 ! TIGER2 variant.

If typ% is not specified, MD5 is used. HASH$() returns a string which contains the

hash value in binary form.

Comment:

343

6.9. H CHAPTER 6. COMMAND REFERENCE

The default HASH$(), which is MD5, and HASH typ%=2, which is SHA1, are

always available. The other hash algorithms are only available if libgcrypt was

compiled in.

EXAMPLE:

h$=HASH$("Calculate a MD5 sum from this text.",1)
PRINT LEN(h$) ! Result: 16
PRINT "MD5=";
FOR i=1 TO 16
PRINT RIGHT$(HEX$(ASC(MID$(h$,i))),2);

NEXT i
PRINT
’ --> Result: 754975185BF0D1B78141D36C2E60E7D1

SEE ALSO: CRC()

344

CHAPTER 6. COMMAND REFERENCE 6.9. H

Command: HELP

Syntax: HELP <string-pattern>

DESCRIPTION:

Gives information on the synopsis of built-in commands and functions. You can

either specify a complete name of a command or a wildcard-pattern. All commands

and functions matching the pattern will be listed.

EXAMPLE:

HELP CL*

Result:

CLEAR [...]
CLEARW [#n]
CLIP i%,i%,i%,i%[,i%,i%]

CLOSE [...]
CLOSEW [#n]
CLR var[,...]

CLS

345

6.9. H CHAPTER 6. COMMAND REFERENCE

Function: HEX$()

Syntax: h$=HEX$(d%[,n%])

DESCRIPTION:

Converts an integer value d% into a string containing its hexadecimal number

representation. The optional parameter n% specifies the minimal length of the out-

put. If it is larger than needed, the string will be filled with leading zeros. Negative

numbers are converted to unsigned int before processing. If you need a binary

representations with sign, use RADIX$() instead.

EXAMPLES:

PRINT HEX$(123) Result: 7B
PRINT HEX$(17,8) Result: 00000011

SEE ALSO: STR$(), BIN$(), OCT$(), RADIX$()

346

CHAPTER 6. COMMAND REFERENCE 6.9. H

Command: HIDEK

Syntax: HIDEK

DESCRIPTION:

Hide the virtual keyboard. (It will be invisible.)

Comment:

Works only on Android. On other platforms this command has currently no

effect.

SEE ALSO: SHOWK

347

6.9. H CHAPTER 6. COMMAND REFERENCE

Command: HIDEM

Syntax: HIDEM

DESCRIPTION:

Hide the mouse cursor. (It will be invisible.)

Comment:

Works only on the framebuffer (Android) and on ATARI-MINT. On other plat-

forms this command has no effect.

SEE ALSO: SHOWM, DEFMOUSE

348

CHAPTER 6. COMMAND REFERENCE 6.9. H

Command: HOME

Syntax: HOME

DESCRIPTION:

HOME will move the text cursor home (upper left corner).

SEE ALSO: PRINT AT()

349

6.9. H CHAPTER 6. COMMAND REFERENCE

Function: HYPOT()

Syntax: a=HYPOT(x,y)

DESCRIPTION:

The HYPOT() function returns the SQRT(x*x+y*y). This is the length of the

hypotenuse of a right-angle triangle with sides of length x and y, or the distance of

the point (x,y) from the origin.

EXAMPLE:

PRINT HYPOT(3,4) ! Result: 5

SEE ALSO: SQRT()

350

CHAPTER 6. COMMAND REFERENCE 6.10. I

6.10 I

351

6.10. I CHAPTER 6. COMMAND REFERENCE

Command: IF

Syntax: IF <condition> [... ELSE [IF <e>] ... ENDIF

DESCRIPTION:

Divides a program up into different blocks depending on how it relates to the

’condition’.

EXAMPLE:

IF a=1
PRINT "I found a one!"

ELSE
PRINT "no one found!"

ENDIF

SEE ALSO: ELSE, ENDIF

352

CHAPTER 6. COMMAND REFERENCE 6.10. I

Function: IMAG()

Syntax: x=IMAG(z#)

DESCRIPTION:

Returns the imaginary part of the complex number z#.

EXAMPLE:

PRINT IMAG(1-2i) Result: -2

SEE ALSO: CONJ(), REAL()

353

6.10. I CHAPTER 6. COMMAND REFERENCE

Operator: IMP

Syntax: a%=<num-expression> IMP <num-expression>

DESCRIPTION:

The operator IMP (implication) corresponds to a logical consequence. The re-

sult is FALSE if a FALSE expression follows a TRUE one. The sequence of the

argument is important. The operator operates on every bit of the values.

Table: A | B | A IMP B
-----+-----+-----------
-1 | -1 | -1
-1 | 0 | 0
0 | -1 | -1
0 | 0 | -1

EXAMPLE:

PRINT BIN$((13 IMP 14) AND 15,4)
Result: 1110

SEE ALSO: TRUE, FALSE, NOT, XOR, EQV

354

CHAPTER 6. COMMAND REFERENCE 6.10. I

Command: INC

Syntax: INC <num-variable>

DESCRIPTION:

INC increments a (numeric) variable. This command is considerably faster than

the equivalent statement "<variable> = <variable>+1".

SEE ALSO: ADD, DEC

355

6.10. I CHAPTER 6. COMMAND REFERENCE

Command: INFOW

Syntax: INFOW [<window-nr>],<string-expression>

DESCRIPTION:

Links the (new) information string to the window with the number. On UNIX this

Information will be displayed in ICONIFIED state of the window.

SEE ALSO: TITLEW

356

CHAPTER 6. COMMAND REFERENCE 6.10. I

Variable: INKEY$

Syntax: <string-result>=INKEY$

DESCRIPTION:

Returns a string containing the ASCII characters of all keys which have been

pressed on the keyboard.

EXAMPLE:

REPEAT ! Wait until a
UNTIL LEN(INKEY$) ! Key was pressed

SEE ALSO: INP(), KEYEVENT

357

6.10. I CHAPTER 6. COMMAND REFERENCE

Function: INLINE$()

Syntax: <string-result>=INLINE$(<string-expression>)

DESCRIPTION:

6-bit ASCII to binary conversion. This command basically does a RADIX con-

version (from 64 to 256) on the contents of the string. This is intended to be used

to include binary data into the source code of a basic program.

The inverse coding (from binary to 6-bit ASCII) is done by the program inline.bas

which comes with X11-Basic.

EXAMPLE:

sym$=INLINE$("$$$$$$$$0$&Tc_>$QL&ZD3cccccK]UD<*%D$$$$$$$$$") ! Train
PUT_BITMAP sym$,92,92,16,16

SEE ALSO: PUT_BITMAP

358

CHAPTER 6. COMMAND REFERENCE 6.10. I

Function: INODE()

Syntax: a%=INODE(filename$)

DESCRIPTION:

Returns the inode number associated with a file or directory on disk. Each inode

stores the attributes and disk block location(s) of the filesystem object’s data.

Comment:

Works only on Unix-Style file systems.

SEE ALSO: EXIST()

359

6.10. I CHAPTER 6. COMMAND REFERENCE

Function: INP(), INP\%(), INP\&()

Syntax: a=INP(<channel-nr>)
a=INP\&(<channel-nr>)
a=INP\%(<channel-nr>)

DESCRIPTION:

Reads one byte from a file previously opened with OPEN (nr>0) or from the

standard files (-1=stderr, -2=stdin, -4=stdout). INP&() reads a word (2 Bytes) and

INP%() reads a long word (4 bytes).

EXAMPLE:

~INP(-2) ! Waits for a key being pressed
PRINT INP%(#1) ! reads a long from a previously opened file

SEE ALSO: OUT, INPUT$()

360

CHAPTER 6. COMMAND REFERENCE 6.10. I

Function: INP?()

Syntax: a=INP?(<channel-nr>)

DESCRIPTION:

Determine the input status of the device. The function return TRUE (-1) if the

device is ready (chars can be read) otherwise FALSE (0).

SEE ALSO: INP()

361

6.10. I CHAPTER 6. COMMAND REFERENCE

Command: INPUT

Syntax: INPUT [#<device-number>,] <variable> [, ...]
INPUT <prompt-expression>, <variable> [, ...]

DESCRIPTION:

INPUT gets comma-delimited input from the standard input or from a previously

opened file as specified by <device-number> (use the LINEINPUT function to read

complete lines from a file and BLOAD to load complete files). Any input is assigned

to the variable(s) specified. If input is expected from a terminal screen or console

window, then <prompt-expression> is printed to the console window to request

input from the user.

EXAMPLE:

INPUT #1,a$
INPUT "Enter your name:",a$

SEE ALSO: LINEINPUT, FORM INPUT AS, PRINT

362

CHAPTER 6. COMMAND REFERENCE 6.10. I

Function: INPUT$()

Syntax: a$=INPUT$(#<nr>,<len>)
a$=INPUT$(<len>)

DESCRIPTION:

Reads <len> characters from the keyboard and assigns them to a string. Op-

tionally, if the device-number is specified, the characters are read in from a previ-

ously OPENed channel <nr>.

SEE ALSO: INPUT, INP(), OPEN

363

6.10. I CHAPTER 6. COMMAND REFERENCE

Function: INSTR()

Syntax: a%=INSTR(<a$>,<b$>[,<n>])

DESCRIPTION:

Searches to see if b$ is present in a$ and returns its position. <n> is a numeric

expression indicating the position in a$ at which the search is to begin (default=1).

If <n> is not given the search begins at the first character of a$. If b$ is found in a$

the start position is returned, otherwise 0.

SEE ALSO: RINSTR(), GLOB(), REGEXP(), MATCH()

364

CHAPTER 6. COMMAND REFERENCE 6.10. I

Function: INT()

Syntax: a%=INT(b)

DESCRIPTION:

INT() cuts off the fractional part of the number a. and returns an integer number.

The integer number has only 32bit, so a should be in the range of -2147483648 to

2147483647.

EXAMPLE:

PRINT INT(1.4), INT(-1.7)
Result: 1, -1

SEE ALSO: CINT(), FRAC(), TRUNC(), ROUND(), FIX()

365

6.10. I CHAPTER 6. COMMAND REFERENCE

Function: INV()

Syntax: b()=INV(a())

DESCRIPTION:

Calculate the inverse of a square matrix a(). The calculation is done using the

singular value decomposition. If the matrix is singular the algorithm tells you how

many singular values are zero or close to zero.

EXAMPLE:

a()=[3,7,3,0;0,2,-1,1;5,4,3,2;6,6,4,-1]
b()=INV(a())
PRINT DET(a())*DET(b()) ! Result: 1
PRINT DET(a()*b()) ! Result: 1

SEE ALSO: SOLVE(), DET()

366

CHAPTER 6. COMMAND REFERENCE 6.10. I

Function: INVERT()

Syntax: c&=INVERT(a&,b&)

DESCRIPTION:

Compute the inverse of a modulo b and return the result. If the inverse exists,

the return value is non-zero and c& will satisfy 0 <= c& < b&. If an inverse doesn’t

exist the return value is zero.

EXAMPLE:

PRINT INVERT(12,53) ! result: 31

SEE ALSO: DIV()

367

6.10. I CHAPTER 6. COMMAND REFERENCE

Function: IOCTL()

Syntax: <num-result> = IOCTL(#n,d%[,adr%])

DESCRIPTION:

IOCTL() manipulates the underlying device parameters of special files. In par-

ticular, many operating characteristics of character special files (e.g. terminals)

may be controlled with ioctl requests. The argument #n must refer to an open file,

socket or device.

The second argument is a device-dependent request code. The third argument

is either another integer value or a pointer to memory.

An ioctl request has encoded in it whether the argument is an in parameter or

out parameter, and the size of the argument adr% refers to in bytes.

Usually, on success zero is returned. A few ioctls use the return value as an

output parameter and return a non-negative value on success. On error, -1 is

returned.

Comment:

In case of open USB devices, following IOCTL requests are implemented:

0 -- USB Reset e.g. ret%=IOCTL(#1,0)
1 -- get descriptor data structure. The data structure has a

length of 4148 bytes.
t$=SPACE$(4148)
ret%=IOCTL(#1,1,VARPTR(t$))
Please see the example program usb.bas for details how
to decode the information in this data structure.

2 -- Set configuration, e.g. ret%=IOCTL(#1,2,confnr%)
3 -- Claim Interface, e.g. ret%=IOCTL(#1,3,intrfnr%)
4 -- control_msg,

368

CHAPTER 6. COMMAND REFERENCE 6.10. I

t$=MKL$(a%)+MKL$(b%)+MKL$(c%)+MKL$(d%)+MKL$(timeout%)
t$=t$+MKL$(len(data$))+data$
ret%=IOCTL(#1,4,VARPTR(t$))

5 -- Set default blk_len, e.g. ~IOCTL(#1,5,blk_len%)
6 -- Set default endpoint_in, e.g. ~IOCTL(#1,6,ep_in%)
7 -- Set default endpoint_out, e.g. ~IOCTL(#1,7,ep_out%)

12 -- get filename+path
t$=SPACE$(4100)
l%=IOCTL(#1,12,VARPTR(t$))
devicefilenr$=LEFT$(t$,l%)

13 -- get manufacturer
t$=SPACE$(100)
l%=IOCTL(#1,13,VARPTR(t$))
manufacturer$=LEFT$(t$,l%)

14 -- get product name
t$=SPACE$(100)
l%=IOCTL(#1,14,VARPTR(t$))
product$=LEFT$(t$,l%)

15 -- get serial number
t$=SPACE$(100)
l%=IOCTL(#1,15,VARPTR(t$))
serialnr$=LEFT$(t$,l%)

16 -- get error string
t$=SPACE$(100)
l%=IOCTL(#1,16,VARPTR(t$))
error$=LEFT$(t$,l%)

Comment:

The interface to Bluetooth devices is not yet defined.

369

6.10. I CHAPTER 6. COMMAND REFERENCE

EXAMPLE:

OPEN "U",#1,"/dev/console"
frequency=300
tone=1190000/frequency
KIOCSOUND=19247
PRINT IOCTL(#1,KIOCSOUND,tone) ! Sounds the speaker
CLOSE #1
Result: 0

SEE ALSO: OPEN, CLOSE

370

CHAPTER 6. COMMAND REFERENCE 6.11. J

6.11 J

371

6.11. J CHAPTER 6. COMMAND REFERENCE

Function: JULDATE$()

Syntax: d$=JULDATE$(a)

DESCRIPTION:

Returns the date as string (see DATE$) given by the Julian day number a.

SEE ALSO: JULIAN(), DATE$

372

CHAPTER 6. COMMAND REFERENCE 6.11. J

Function: JULIAN()

Syntax: a=JULIAN(date$)

DESCRIPTION:

Returns the Julian date corresponding to the date given as a string in standard

format. The number which is returned is an integer number and has the unit days.

EXAMPLE:

PRINT "Number of days since Sept. 11 2001: ";
PRINT JULIAN(DATE$)-JULIAN("11.09.2001")

SEE ALSO: JULDATE$(), DATE$

373

6.12. K CHAPTER 6. COMMAND REFERENCE

6.12 K

374

CHAPTER 6. COMMAND REFERENCE 6.12. K

Command: KEYEVENT

Syntax: KEYEVENT kc,ks[,t$,k,x,y,xroot,yroot]

DESCRIPTION:

Waits until a key is pressed (in graphic window). After the key event has oc-

curred, the variables have following content:

kc -- Key-code
ks -- state of Shift/Control/Alt etc.
t$ -- corresponding character
x -- x coordinate of mouse pointer relative to window
y -- y coordinate
xroot -- x coordinate of mouse pointer relative to screen
yroot -- y coordinate
k -- mouse button state

SEE ALSO: MOUSEEVENT, EVENT, EVENT?()

375

6.12. K CHAPTER 6. COMMAND REFERENCE

Command: KILL

Syntax: KILL <filename>

DESCRIPTION:

KILL deletes a file from the file system.

EXAMPLE:

KILL "delme"

SEE ALSO: OPEN, RMDIR

376

CHAPTER 6. COMMAND REFERENCE 6.13. L

6.13 L

377

6.13. L CHAPTER 6. COMMAND REFERENCE

Function: LCM()

Syntax: c&=LCM(a&,b&)

DESCRIPTION:

Returns the least common multiple of a and b. c is always positive, irrespective

of the signs of a and b. c will be zero if either a or b is zero.

EXAMPLE:

PRINT LCM(12,18) ! Result: 36

SEE ALSO: GCD()

378

CHAPTER 6. COMMAND REFERENCE 6.13. L

Function: LEFT$()

Syntax: a$=LEFT$(<string-expression> [,<numchars>])

DESCRIPTION:

LEFT$() returns the specified number of characters from its argument, begin-

ning at its left side. If the number of characters is not specified then LEFT$() returns

only the leftmost character.

EXAMPLE:

PRINT LEFT$("Hello",1) ! Result: H

SEE ALSO: RIGHT$(), MID$()

379

6.13. L CHAPTER 6. COMMAND REFERENCE

Function: LEFTOF$()

Syntax: a$=LEFTOF$(t$,s$)

DESCRIPTION:

LEFTOF$() returns the left part of t$ at the position of the first occurrence of s$

in t$. If s$ is not contained in t$, the whole string t$ is returned.

EXAMPLE:

PRINT LEFTOF$("Hello","ll") ! Result: He

SEE ALSO: RIGHTOF$(), MID$()

380

CHAPTER 6. COMMAND REFERENCE 6.13. L

Function: LEN()

Syntax: l=LEN(t$)

DESCRIPTION:

Returns the length of a string.

EXAMPLE:

PRINT LEN("Hello") ! Result: 5

381

6.13. L CHAPTER 6. COMMAND REFERENCE

Command: LET

Syntax: LET <variable> = <expression>

DESCRIPTION:

LET assigns the value of <expression> to <variable>. The interpreter also sup-

ports implicit assignments, ie. the LET keyword before an assignment may be

omitted. This works because the first equal sign is regarded as assignment oper-

ator.

EXAMPLE:

LET N=1

382

CHAPTER 6. COMMAND REFERENCE 6.13. L

Function: LGAMMA()

Syntax: b=LGAMMA(a)

DESCRIPTION:

The LGAMMA() function returns the natural logarithm of the absolute value of

the Gamma function.

LGAMMA(x)=ASB(LN(GAMMA(x)))

If x is a NaN, a NaN is returned.

If x is 1 or 2, +0 is returned.

If x is positive infinity or negative infinity, positive infinity is returned.

If x is a non-positive integer, a pole error occurs, and the function returns inf.

If the result overflows, a range error occurs, and the function returns inf with the

correct mathematical sign.

SEE ALSO: GAMMA(), SIN()

383

6.13. L CHAPTER 6. COMMAND REFERENCE

Command: LINE

Syntax: LINE x1,y1,x2,y2

DESCRIPTION:

Draws a straight line from (x1,y1) to (x2,y2). The line thickness as well as other

drawing parameters can be set with DEFLINE and GRAPHMODE.

SEE ALSO: DRAW, PLOT, DEFLINE

384

CHAPTER 6. COMMAND REFERENCE 6.13. L

Command: LINEINPUT

Syntax: LINEINPUT [[#]<device-number>,] t$

DESCRIPTION:

LINE INPUT reads an entire line from a standard input or from a previously

opened file as specified by <device-number> (to load a complete file, use BLOAD).

Unlike the regular INPUT command, LINEINPUT does not stop at delimiters (com-

mas).

SEE ALSO: INPUT

*

Function: LINEINPUT$()

Syntax: t$=LINEINPUT$([#1])

DESCRIPTION:

LINEINPUT$() reads an entire line from a standard input or from a previously

opened file as specified by <device-number> (to load a complete file, use BLOAD).

Unlike the regular INPUT command, LINEINPUT$() does not stop at delimiters

(commas).

385

6.13. L CHAPTER 6. COMMAND REFERENCE

SEE ALSO: INPUT$(), LINEINPUT

386

CHAPTER 6. COMMAND REFERENCE 6.13. L

Command: LINK

Syntax: LINK #<device-nr>,name$

DESCRIPTION:

LINK links a shared object file/library (*.so in /var/lib) dynamically. It will from

now on be addressed via the device-nr.

The addresses of he symbols of that library can be read with the SYM_ADR()

function.

If the Library is not used any more it can be unlinked with the UNLINK com-

mand.

SEE ALSO: UNLINK, SYM_ADR(), CALL

387

6.13. L CHAPTER 6. COMMAND REFERENCE

Command: LIST

Syntax: LIST [<line-number>[,<line-number>]

DESCRIPTION:

LIST displays the source code or a code segment. Note that the line number of

the first line in a file is 0, that the second line is line 1 etc.

EXAMPLE:

LIST
LIST 1,10
LIST 5

SEE ALSO: PLIST, PRG$()

388

CHAPTER 6. COMMAND REFERENCE 6.13. L

Function: LISTSELECT()

Syntax: num%=LISTSELECT(title$,list$())

DESCRIPTION:

listselect opens a graphical list-selector, which enables the user to select one

entry out of an array list$(). The index of the entry is returned or -1 in case no item

was selected.

SEE ALSO: FILESELECT

389

6.13. L CHAPTER 6. COMMAND REFERENCE

Command: LOAD

Syntax: LOAD name$

DESCRIPTION:

Loads a program into memory.

EXAMPLE:

LOAD "testme.bas"

SEE ALSO: XLOAD, MERGE, CHAIN

390

CHAPTER 6. COMMAND REFERENCE 6.13. L

Function: LOC()

Syntax: p%=LOC(#<device-nre>)

DESCRIPTION:

Returns the location of the file pointer for the file with the device number. The

location is given in number of bytes from the start of the file.

SEE ALSO: LOF()

391

6.13. L CHAPTER 6. COMMAND REFERENCE

Command: LOCAL

Syntax: LOCAL <var>[,<var>,...]

DESCRIPTION:

Declares several variables to be a local variable. This command is normally

used inside PROCEDUREs and FUNCTIONs. LOCAL does not initialize the vari-

ables. If you need them to be initialized, use CLR after LOCAL.

EXAMPLE:

LOCAL a,b$,s()

392

CHAPTER 6. COMMAND REFERENCE 6.13. L

Command: LOCATE

Syntax: LOCATE row%,column%

DESCRIPTION:

Positions the cursor to the specified location. The upper right corner of the

screen is located at 0,0.

SEE ALSO: PRINT AT(), CRSLIN, CRSCOL

393

6.13. L CHAPTER 6. COMMAND REFERENCE

Function: LOF()

Syntax: l%=LOF(#n)

DESCRIPTION:

Returns the length of the file with device number n.

SEE ALSO: LOC()

394

CHAPTER 6. COMMAND REFERENCE 6.13. L

Function: LOG(), LOG10(), LN()

Syntax: <num-result>=LOG(<num-expression>)
<num-result>=LOG10(<num-expression>)
<num-result>=LN(<num-expression>)

DESCRIPTION:

Returns the natural logarithm (log, ln) or the logarithm base 10 (log10).

SEE ALSO: EXP()

395

6.13. L CHAPTER 6. COMMAND REFERENCE

Function: LOGB()

Syntax: <int-result>=LOGB(<num-expression>)

DESCRIPTION:

Returns the logarithm base 2 in integer values.

SEE ALSO: LOG()

396

CHAPTER 6. COMMAND REFERENCE 6.13. L

Function: LOG1P()

Syntax: <num-result>=LOG1P(<num-expression>)

DESCRIPTION:

Returns a value equivalent to log(1+x). It is computed in a way that is accurate

even if the value of x is near zero.

SEE ALSO: LOG(), EXP(), LN()

397

6.13. L CHAPTER 6. COMMAND REFERENCE

Command: LOOP

Syntax: LOOP

DESCRIPTION:

LOOP terminates a DO loop and can be used as unqualified loop terminator

(such a loop can only be aborted with the EXIT command). Execution continues

with the DO line.

EXAMPLE:

DO
PRINT TIME$
PAUSE 1

LOOP

SEE ALSO: DO, EXIT IF, BREAK

398

CHAPTER 6. COMMAND REFERENCE 6.13. L

Function: LOWER$()

Syntax: <string-result>=LOWER$(<string-expression>)

DESCRIPTION:

Transforms all upper case letters of a string to lower case. Any non-letter char-

acters are left unchanged.

EXAMPLE:

PRINT LOWER$("Oh my GOD!") ! Result: oh my god!

SEE ALSO: UPPER$()

399

6.13. L CHAPTER 6. COMMAND REFERENCE

Function: LPEEK()

Syntax: <int-result>=LPEEK(<num-expression>)

DESCRIPTION:

Reads a 4 byte integer from address.

SEE ALSO: PEEK(), POKE

400

CHAPTER 6. COMMAND REFERENCE 6.13. L

Command: LPOKE

Syntax: LPOKE <adr>,<num-expression>

DESCRIPTION:

Writes a 4 byte integer to address <adr>.

SEE ALSO: DPOKE, POKE, PEEK()

401

6.13. L CHAPTER 6. COMMAND REFERENCE

Command: LTEXT

Syntax: LTEXT x,y,t$

DESCRIPTION:

Draws a text at position x,y. The LTEXT command uses a linegraphic text, which

allows the user to draw very large fonts and be independent of the system fonts.

The font style can be influenced with the DEFLINE and the DEFTEXT command.

SEE ALSO: DEFTEXT, TEXT, DEFLINE, LTEXTLEN()

402

CHAPTER 6. COMMAND REFERENCE 6.13. L

Function: LTEXTLEN()

Syntax: w=LTEXTLEN(t$)

DESCRIPTION:

Returns the with of the text t$ in pixels. The font style can be influenced with

the DEFLINE and the DEFTEXT command.

SEE ALSO: LTEXT

403

6.13. L CHAPTER 6. COMMAND REFERENCE

Function: LUCNUM()

Syntax: w&=LUCNUM(i%)

DESCRIPTION:

Returns the i’th Lucas number.

Comment:

This function works only in the interpreter and only when used in a direct as-

signment to a big integer variable.

EXAMPLES:

w&=LUCNUM(100) --> Result: 792070839848372253127

SEE ALSO: FIB(), PRIMORIAL()

404

CHAPTER 6. COMMAND REFERENCE 6.14. M

6.14 M

405

6.14. M CHAPTER 6. COMMAND REFERENCE

Function: MALLOC()

Syntax: adr%=MALLOC(size%)

DESCRIPTION:

Allocates size% bytes and returns a pointer to the allocated memory. The mem-

ory is not cleared.

SEE ALSO: FREE(), MFREE(), REALLOC()

406

CHAPTER 6. COMMAND REFERENCE 6.14. M

Function: MATCH()

Syntax: a%=MATCH(a$,r$)

DESCRIPTION:

Searches to see if a substring matching the regular expression r$ is present in

a$ and returns its position. If no matching substring is found in a$, 0 is returned.

In case of an ERROR in the regular expression, -1 is returned.

Comment:

Regular expressions are very powerful in pattern matching. Compared to IN-

STR() or GLOB() you have nearly infinite flexibility. If you do not know what a

regular expression is or what the syntax of it should be, please look elsewhere for

information. An full explanation would be too much for this manual. Unfortunately

there are many different standards for regular expression. The Implementation

uses here is the so called "POSIX.2" type. Note: Zero-Bytes (CHR$(0)) cannot be

matched and will indicate the end of the content of a$.

Comment:

This command is currently no available in the WINDOWS version of X11-Basic.

EXAMPLES:

t$="This 1 is nice 2 so 33 for 4254"
PRINT MATCH(t$,"([[:digit:]]+)[^[:digit:]]+([[:digit:]]+)")

407

6.14. M CHAPTER 6. COMMAND REFERENCE

Result: 6

SEE ALSO: INSTR(), RINSTR(), GLOB(), REGEXP()

408

CHAPTER 6. COMMAND REFERENCE 6.14. M

Function: MAX()

Syntax: m=MAX(a,b[,c,...])
m=MAX(f())

DESCRIPTION:

Returns the largest value out of the list of arguments or the largest value of an

array.

SEE ALSO: MIN()

409

6.14. M CHAPTER 6. COMMAND REFERENCE

Command: MENU

Syntax: MENU

DESCRIPTION:

Performs menu check and action.

This command handles EVENTs. Prior to use, the required action should be

specified with a MENUDEF command. For constant supervision of events, MENU

is usually found in a loop.

EXAMPLE:

MENUDEF field$(),menuaction
DO
pause 0.05
MENU

LOOP
PROCEDURE menuaction(k)

...
RETURN

SEE ALSO: MENUDEF

410

CHAPTER 6. COMMAND REFERENCE 6.14. M

Command: MENUDEF

Syntax: MENUDEF array$(),<procname>

DESCRIPTION:

This command reads text for menu-header from array\$() the string-array

contains the text for menu-titles and menu-entries

- end of row: empty string ""
- end of menu-text: empty string ""

<procname> The procedure to which control will be passed on selection of a menu

entry. It must be a procedure with one parameter which is the number of the

selected item to call when item was selected.

EXAMPLE:

field$()=["INFO"," Menutest ","","FILE"," new"," open ..."," save","\
save as ...","--------------"," print","--------------"," Quit","",""]
MENUDEF field$(),menuaction
DO
pause 0.05
MENU

LOOP
PROCEDURE menuaction(k)
PRINT "MENU selected ";k;" contents: ";field$(k)
IF field$(k)=" Quit"
QUIT

ENDIF
RETURN

SEE ALSO: MENU, MENUSET, MENUKILL

411

6.14. M CHAPTER 6. COMMAND REFERENCE

*

Command: MENUKILL

Syntax: MENUKILL

DESCRIPTION:

Erases the menu, which prior has been defined with MENUDEF.

SEE ALSO: MENUDEF

412

CHAPTER 6. COMMAND REFERENCE 6.14. M

Command: MENUSET

Syntax: MENUSET n,x

DESCRIPTION:

Change appearance of menu-entry n with value x.

x=0 ’ ’ normal, reset marker ’^’
x=1 ’^’ set marker
x=2 ’=’ set menu-point non selectable
x=3 ’ ’ set menu-point selectable
x=4 check the menu entry

’-’ permanent non selectable

SEE ALSO: MENU

413

6.14. M CHAPTER 6. COMMAND REFERENCE

Command: MERGE

Syntax: MERGE <filename>

DESCRIPTION:

MERGE appends a BASIC program to the program currently in memory. Pro-

gram execution is not interrupted. This command typically is used to append often-

used subroutines at run-time.

Comment:

MERGE always loads the file at the end of the current program and not at the

place where the MERGE statement itself is located.

MERGE is excecuted on runtime, this means if the MERGE command is not

reched by the program flow, nothing will be merged.

An END statement is implied at the end of the currently loaded file. If you

want to excecute parts of the just merged code you must use labels and GOTO or

procedures or functions.

MERGE is a command and not a compiler directive. MERGE does something

only when it is reached in the program flow.

SEE ALSO: CHAIN, LOAD

EXAMPLE:

MERGE "examples/mylibrary.bas"

414

CHAPTER 6. COMMAND REFERENCE 6.14. M

a=@functionfromlibrary()

415

6.14. M CHAPTER 6. COMMAND REFERENCE

Command: MFREE

Syntax: MFREE adr%

DESCRIPTION:

Frees a memory area which has been allocated with MALLOC() before. The

address must be the same as previously returned by MALLOC().

SEE ALSO: MALLOC()

416

CHAPTER 6. COMMAND REFERENCE 6.14. M

Function: MID$()

Syntax: m$=MID$(t$,x[,l])

DESCRIPTION:

Returns l characters in a string from the position x of the string t$. If x is larger

than the length of t$, then an empty string is returned. If l is omitted, then the

function returns only one character of the string from position x.

SEE ALSO: LEFT$(), RIGHT$()

417

6.14. M CHAPTER 6. COMMAND REFERENCE

Function: MIN()

Syntax: m=MIN(a,b[,c,...])
m=MIN(f())

DESCRIPTION:

Returns the smallest value out of the list of arguments or the smallest value of

an array.

SEE ALSO: MAX()

418

CHAPTER 6. COMMAND REFERENCE 6.14. M

Command: MKDIR

Syntax: MKDIR <path-name>[,mode%]

DESCRIPTION:

MKDIR attempts to create a directory named path-name. The argument mode

specifies the permissions to use. It is modified by the process’s umask in the usual

way: the permissions of the created directory are (mode% AND NOT umask AND

(7*64+7*8+7)). Other mode bits of the created directory depend on the operating

system.

EXAMPLE:

MKDIR "/tmp/myfolder"

SEE ALSO: CHDIR, RMDIR

419

6.14. M CHAPTER 6. COMMAND REFERENCE

Function: MKI$(), MKL$(), MKS$()

Function: MKF$(), MKD$(), MKA$()

Syntax: a$=MKI$(<num-expression>)
a$=MKL$(<num-expression>)
a$=MKS$(<num-expression>)
a$=MKF$(<num-expression>)
a$=MKD$(<num-expression>)
a$=MKA$(<array-expression>)

DESCRIPTION:

These six functions transform a number into a character string.

MKI$ a 16-bit number into a 2-byte string,
MKL$ a 32-bit number into a 4-byte string,
MKS$ a number into a 4-byte float format,
MKF$ same as MKS$().
MKD$ a number into a 8-byte double float format,
MKA$() transforms a whole Array into a string.

It can be reversed with CVA().

SEE ALSO: CVI(), CVF(), CVL(), CVA(), CVS(), CVD()

420

CHAPTER 6. COMMAND REFERENCE 6.14. M

Operator: MOD

Syntax: a=x MOD y

DESCRIPTION:

Produces the remainder of the division of x by y.

SEE ALSO: DIV, MOD()

*

Function: MOD()

Syntax: a=MOD(x,y)

DESCRIPTION:

Produces the remainder of the division of x by y.

SEE ALSO: DIV, MOD

421

6.14. M CHAPTER 6. COMMAND REFERENCE

Function: MODE()

Syntax: m%=MODE(filename$)

DESCRIPTION:

Return the file permissions and the file type of the file or directory given. With

these values one can find out what kind the file is of. The bits of the returned

integer have the following meaning:

xxxx xxxx xxxx xxxx
| |||| |rwx-- permission for others
| |||| | (read, write, excecute)
| ||rw x----- permissions for group
r wx--------- permissions for user
s------------- sticky bit
g-------------- set group id bit

u--------------- set user id bit
++++----------------- file type:

0 -- regular file
1 -- fifo
2 -- charackter device
4 -- directory
6 -- block device
8 -- regular file
10 -- symbolic link
12 -- socket

Comment:

May not work on WINDOWS systems.

422

CHAPTER 6. COMMAND REFERENCE 6.14. M

EXAMPLES:

PRINT OCT$(MODE(".")) ---> Result: 40750
DEFFN isdir(f$)=(MODE(f$) AND 0x4000)>0

SEE ALSO: INODE(), EXIST()

423

6.14. M CHAPTER 6. COMMAND REFERENCE

Command: MOTIONEVENT

Syntax: MOTIONEVENT x,y,xroot,yroot,s

DESCRIPTION:

Waits until the mouse has been moved. (graphic window). Returns new mouse

coordinate (x,y) relative to window, mouse coordinate (xroot,yroot) relative to screen

and state of the Alt/Shift/Caps keys (s).

SEE ALSO: MOUSE, MOUSEX, MOUSEY, MOUSEK, MOUSEEVENT

424

CHAPTER 6. COMMAND REFERENCE 6.14. M

Command: MOUSE

Syntax: MOUSE x,y,k

DESCRIPTION:

Determines the mouse position (x,y) relative to the origin of the graphics window

and the status of the mouse buttons (k) and the mouse wheel if present.

k=0 no buttons pressed
k=1 left button
k=2 middle button
k=4 right button
k=8 wheel up
k=16 wheel down

or any combinations.

SEE ALSO: MOUSEX, MOUSEY, MOUSEK

425

6.14. M CHAPTER 6. COMMAND REFERENCE

Command: MOUSEEVENT

Syntax: MOUSEEVENT x,[y,k,xroot,yroot,s]

DESCRIPTION:

Waits until a mouse button is pressed (graphic window). Returns the mouse

coordinate (x,y) relative to the window, the mouse coordinate (xroot,yroot) relative

to the screen, the mouse button (k) and state of the Alt/Shift/Caps keys (s).

k=0 no buttons pressed
k=1 left button
k=2 middle button
k=3 right button
k=4 wheel up
k=5 wheel down

s=0 normal
s=1 Shift
s=2 CapsLock
s=4 Ctrl
s=8 Alt
s=16 NumLock
s=64 Windows-Key
s=128 AltGr

SEE ALSO: MOUSE, MOUSEX, MOUSEY, MOUSEK, KEYEVENT, EVENT, EVENT?()

426

CHAPTER 6. COMMAND REFERENCE 6.14. M

Variable: MOUSEX, MOUSEY, MOUSEK

Variable: MOUSES

Syntax: x%=MOUSEX
y%=MOUSEY
k%=MOUSEK
s%=MOUSES

DESCRIPTION:

MOUSEX returns the current horizontal position of the mouse cursor, or of the

last position of a touch on a touch screen.

MOUSEY holds the vertial position accordingly.

MOUSEK returns the current status of the mouse buttons:

MOUSEK=0 no buttons pressed
MOUSEK=1 left button
MOUSEK=2 middle button
MOUSEK=4 right button
MOUSEK=8 wheel up
MOUSEK=16 wheel down

or any combinations.

MOUSES returns the current state (state when the touchscreen was last touched)

of the SHIFT/CAPSLOCK/CTRL keys.

MOUSES=0 no Keys
MOUSES=1 Shift
MOUSES=2 CapsLock

427

6.14. M CHAPTER 6. COMMAND REFERENCE

MOUSES=4 Control
MOUSES=8 Alt
MOUSES=16 NumLock
MOUSES=64 Windows-Key
MOUSES=128 AltGr

or any combination.

SEE ALSO: MOUSE, SETMOUSE, MOUSEEVENT

428

CHAPTER 6. COMMAND REFERENCE 6.14. M

Command: MOVEW

Syntax: MOVEW n,x,y

DESCRIPTION:

Moves Window n to absolute screen position x,y

SEE ALSO: OPENW, SIZEW, TITLEW

429

6.14. M CHAPTER 6. COMMAND REFERENCE

Function: MSHRINK()

Syntax: a=MSHRINK(adr%,size%)

DESCRIPTION:

Reduces the size of a storage area previously allocated with MALLOC. adr%

specifies the address of the area, size% gives the required size. Returns 0 if no

error. This command does nothing (and always returns 0) on Linux and windows

operating systems. It is implemented for compatibility reasons only. If you really

need to resize a memory area, use REALLOC().

SEE ALSO: MALLOC(), REALLOC()

430

CHAPTER 6. COMMAND REFERENCE 6.14. M

Command: MSYNC

Syntax: MSYNC adr,length

DESCRIPTION:

MSYNC flushes changes made to the in-core copy of a file that was mapped

into memory using MAP back to disk. Without use of this call there is no guarantee

that changes are written back before UNMAP is called. To be more precise, the

part of the file that corresponds to the memory area starting at addr and having

length length is updated.

SEE ALSO: MAP, UNMAP

431

6.14. M CHAPTER 6. COMMAND REFERENCE

Function: MTFD$()

Syntax: b$=MTFD$(a$)

DESCRIPTION:

This function performs a Move To Front decoding function on an input string.

The MTF decoder keeps an array of 256 characters in the order that they have

appeared. Each time the encoder sends a number, the decoder uses it to look up

a character in the corresponding position of the array, and outputs it. That character

is then moved up to position 0 in the array, and all the in-between characters are

moved down a spot.

SEE ALSO: MTFE$()

432

CHAPTER 6. COMMAND REFERENCE 6.14. M

Function: MTFE$()

Syntax: b$=MTFE$(a$)

DESCRIPTION:

This function performs a Move To Front encoding function on an input string. An

MTF encoder encodes each character using the count of distinct previous charac-

ters seen since the characters last appearance. This is implemented by keeping

an array of characters. Each new input character is encoded with its current posi-

tion in the array. The character is then moved to position 0 in the array, and all the

higher order characters are moved down by one position to make room.

SEE ALSO: MTFD$()

433

6.14. M CHAPTER 6. COMMAND REFERENCE

Command: MUL

Syntax: MUL var,n

DESCRIPTION:

Same as var=var*n but faster.

SEE ALSO: ADD, SUB, MUL(), DIV

*

Function: MUL()

Syntax: a=MUL(b,c)

DESCRIPTION:

Returns product of two numbers.

SEE ALSO: ADD(), SUB(), MUL, DIV()

434

CHAPTER 6. COMMAND REFERENCE 6.15. N

6.15 N

435

6.15. N CHAPTER 6. COMMAND REFERENCE

Operator: NAND

Syntax: a NAND b

DESCRIPTION:

The result of the NAND operator is true, if not both operands are true, and false

otherwise. Is the same as NOT (a AND b).

Returns -1 for true, 0 for false.

Also used to combine bits in binary number operations. E.g. (1 NAND -1)

returns -2.

EXAMPLES:

PRINT 3=3 NAND 4<2 ! Result: -1 (true)
PRINT 3>2 NAND 5>3 ! Result: 0 (false)
PRINT (1 NAND -3) ! Result: -2

SEE ALSO: NOR, AND, NOT

436

CHAPTER 6. COMMAND REFERENCE 6.15. N

Command: NEW

Syntax: NEW

DESCRIPTION:

NEW erases the program and all variables in memory (and stops execution of

program.)

SEE ALSO: CLEAR

437

6.15. N CHAPTER 6. COMMAND REFERENCE

Command: NEXT

Syntax: NEXT [<variable>]

DESCRIPTION:

NEXT terminates a FOR loop. FOR loops must be nested correctly: The vari-

able name after NEXT is for looks only and can not be used to select a FOR

statement. Each NEXT jumps to the matching FOR statement regardless if and

what <variable> is specified after NEXT.

SEE ALSO: FOR

EXAMPLE:

FOR n=1 TO 2
FOR m=10 to 11
PRINT "n=";n,"m=";m

NEXT m
NEXT n

438

CHAPTER 6. COMMAND REFERENCE 6.15. N

Function: NEXTPRIME()

Syntax: p&=NEXTPRIME(x&)

DESCRIPTION:

Returns the smallest prime number bigger than x.

EXAMPLE:

PRINT NEXTPRIME(200) ! Result: 211
PRINT NEXTPRIME(200000000000000000000) ! Result: 200000000000000000089

SEE ALSO: GCD()

439

6.15. N CHAPTER 6. COMMAND REFERENCE

Function: NLINK()

Syntax: m%=NLINK(filename$)

DESCRIPTION:

Return the number of (hard) links to the file or directory.

Comment:

May not work on WINDOWS systems.

EXAMPLES:

PRINT NLINK(".") ---> Result: 2

SEE ALSO: INODE(), EXIST(), MODE()

440

CHAPTER 6. COMMAND REFERENCE 6.15. N

Command: NOP, NOOP

Syntax: NOP
NOOP

DESCRIPTION:

No Operation: do nothing.

441

6.15. N CHAPTER 6. COMMAND REFERENCE

Operator: NOR

Syntax: a NOR b

DESCRIPTION:

The result of the NOR operator is true, if both operands are zero, and false

otherwise. Used to determine if both of the conditions are false. Is the same as

NOT (a OR b).

Returns -1 for true, 0 for false.

Also used to combine bits in binary number operations. E.g. (1 NOR -8) returns

6.

EXAMPLES:

PRINT 3=3 NOR 4<2 Result: 0 (false)
PRINT 3>3 NOR 5<3 Result: -1 (true)

PRINT (4 NOR -128) Result: 123

SEE ALSO: NAND, OR, NOT, XOR

442

CHAPTER 6. COMMAND REFERENCE 6.15. N

Command: NOROOTWINDOW

Syntax: NOROOTWINDOW

DESCRIPTION:

Switches back to normal graphic output (normally into a window), if it was

switched to ROOTWINDOW before.

SEE ALSO: ROOTWINDOW

443

6.15. N CHAPTER 6. COMMAND REFERENCE

Operator: NOT

Syntax: NOT <num-expression>

DESCRIPTION:

The result of the NOT operator is true, if the following expression is false, and

false if the expression is true. Used to produce the opposite/negation of a logical

expression.

Returns -1 for true, 0 for false.

Also used to invert bits in binary number operations. E.g. (NOT -8) returns 7.

SEE ALSO: AND, OR, NAND, NOR

444

CHAPTER 6. COMMAND REFERENCE 6.16. O

6.16 O

445

6.16. O CHAPTER 6. COMMAND REFERENCE

Command: OBJC_ADD

Syntax: OBJC_ADD tree,parent,child

DESCRIPTION:

Adds an object to a given tree and pointers between the existing objects and

the new object are created.

tree = address of the object tree
parent = object number of the parent object
child = object number of the child to be added.

SEE ALSO: OBJC_DELETE

*

Command: OBJC_DELETE

Syntax: OBJC_DELETE tree,object

DESCRIPTION:

An object is deleted from an object tree by removing the pointers. The object is

still there and can be restored by repairing the pointers.

446

CHAPTER 6. COMMAND REFERENCE 6.16. O

tree address of the object tree
object Object number of the object to delete.

SEE ALSO: OBJC_ADD

447

6.16. O CHAPTER 6. COMMAND REFERENCE

Function: OBJC_DRAW()

Syntax: ret=objc_draw(tree,startob,depth,cx,cy,cw,ch)

DESCRIPTION:

Draws any object or objects in an object tree.

Each OBJC_DRAW call defines a new clip rectangle, to which the drawing is

limited for that call.

Returns 0 on error.

tree address of the object tree
startob number of the first object to be drawn
depth Number of object levels to be drawn
cx,cy coordinates of top left corner of clipping

rectangle
cw,ch width & height of clipping rectangle

SEE ALSO: OBJC_FIND()

448

CHAPTER 6. COMMAND REFERENCE 6.16. O

Function: OBJC_FIND()

Syntax: idx=objc_find(tree,startob,depth,x,y)

DESCRIPTION:

Finds an object under a specific screen coordinate. (These may be the mouse

coordinates.)

The application supplies a pointer to the object tree, the index to the start object

to search from, the x- and y-coordinates of the mouse’s position, as well as a

parameter that tells OBJC_FIND how far downthe tree to search (depth).

This function returns the index of the found Object or -1 in case no object could

be found.

SEE ALSO: OBJC_DRAW()

449

6.16. O CHAPTER 6. COMMAND REFERENCE

Function: OBJC_OFFSET()

Syntax: ret=objc_offset(tree,obj,x,y)

DESCRIPTION:

Calculates the absolute screen coordinates of the specified object in a specified

tree.

Returns 0 on error.

tree address of the object tree
obj object number
x,y returns the x,y coordinates to these

variables.

SEE ALSO: OBJC_FIND()

450

CHAPTER 6. COMMAND REFERENCE 6.16. O

Function: OCT$()

Syntax: o$=OCT$(d%[,n%])

DESCRIPTION:

Converts an integer value d% into a string containing its octal number represen-

tation. The optional parameter n% specifies the minimal length of the output. If it

is larger than needed, the string will be filled with leading zeros. Negative numbers

are converted to unsigned int before processing. If you need binary representa-

tions with sign, use RADIX$() instead.

EXAMPLES:

PRINT OCT$(123) Result: 173
PRINT OCT$(9,8) Result: 00000011

SEE ALSO: BIN$(), STR$(), HEX$(), RADIX$()

451

6.16. O CHAPTER 6. COMMAND REFERENCE

Function: ODD()

Syntax: a=ODD(number)

DESCRIPTION:

Returns true (-1) if the number is odd, else false (0).

SEE ALSO: EVEN()

452

CHAPTER 6. COMMAND REFERENCE 6.16. O

Command: ON * GOSUB

Syntax: ON a GOSUB proc1[,proc2,...]

DESCRIPTION:

Calls a procedure out of the given list of procedures depending on the value of

a. If a=1, the first procedure is used, if a=2 the second, and so on.

SEE ALSO: GOSUB

*

Command: ON * GOTO

Syntax: ON a GOTO label1[,label2,...]

DESCRIPTION:

Branches to a label out of the given list depending on the value of a. If a=1, the

first label is used, if a=2 the second, and so on.

SEE ALSO: GOTO

453

6.16. O CHAPTER 6. COMMAND REFERENCE

Command: ON BREAK

Syntax: ON BREAK CONT
ON BREAK GOSUB <procedure>
ON BREAK GOTO <label>

DESCRIPTION:

ON BREAK installs a subroutine that gets called when the BREAK condition

(normally CTRL-c) occurs. ON BREAK CONT causes the program to continue in

any case. ON BREAK GOTO jumps to a specified label.

SEE ALSO: GOTO, ON ERROR

*

Command: ON ERROR

Syntax: ON ERROR CONT
ON ERROR GOSUB <procedure>
ON ERROR GOTO <label>

454

CHAPTER 6. COMMAND REFERENCE 6.16. O

DESCRIPTION:

ON ERROR installs an error handling subroutine that gets called when the next

error occurs. Also one can branch to a label in case of an error. Program excecu-

tion can only be continued when RESUME can be used, and when the error is not

FATAL.

ON ERROR CONT will ignore any error and will not print error messages.

SEE ALSO: GOSUB, ERROR, RESUME, FATAL

455

6.16. O CHAPTER 6. COMMAND REFERENCE

Command: OPEN

Syntax: OPEN mode$,#<device-number>,filename$[,port%]

DESCRIPTION:

OPEN opens the specified file for reading or writing or both. The <device-

number> is the number you want to assign to the file (functions that read from

files or write to files expect to be given this number). The device number must be

between 0 and 99 in the current implementation of X11-Basic. When you close a

file, the device number is released and can be used again in subsequent OPEN

statements.

mode$ is a character string which indicates the way the file should be opened.

The first character of that string may be "O", "I", "U" or "A". These characters

correspond to the mode for which the file is opened: "I" – INPUT, "O" –OUTPUT,

"A" – APPEND and "U" – UNSPECIFIED/UPDATE/ READandWRITE.

Open a file for INPUT if you want to read data from the file. If you open a file

for OUTPUT, you can write to the file. However, all data that was stored in the

file (if the file already exists) is lost. If you want to write new data to a file while

keeping the existing content, open the file for appending to it, using the APPEND

mode. When you open a file using the UPDATE ("U") keyword, you can both read

from the file and write to the file at arbitrary positions. You can, for example, seek

a position in the middle of the file and start appending new lines of text. All file

modes but INPUT create the file if it does not exist. OPEN "I" fails if the file does

not exist (use the EXIST() function before OPEN to be sure that the file exists).

The second character specifies the type of file which should be opened or cre-

ated:

"" default, opens a regular file
"U" opens a datagram socket connection (UDP)
"C" opens a stream socket as client with connection (TCP)
"S" opens a stream socket as server

456

CHAPTER 6. COMMAND REFERENCE 6.16. O

"A" Socket accept connection
"X" extra settings for a special device following:

(e.g. speed and parity of transmission via serial ports)
"UX:baud,parity,bits,stopbits,flow"

"Y" opens an USB connection. The filename specifies the
vendor-ID and product-ID of the device to be opened.

"B" opens a BLUETOOTH stream socket as client with
connection (RFCOMM)

"L" opens a BLUETOOTH datagram socket as client with
connection (L2CAP)

"V" opens a BLUETOOTH datagram socket as server (L2CAP)
"Z" opens a BLUETOOTH a stream socket as server (RFCOMM)

<port-nr> The portnr is used by the OPEN "UC" and OPEN "UU" statement to

specify the TCP/IP Port of connection (FTP, WWW, TELNET, MAIL etc.) and also

by the "UB","UL","UV" and "UZ" connection types.

Comment:

Special settings of USB and BLUETOOTH devices can be acces by IOCTL().

They are not fully documented by now, and also the implementation is not yet fixed.

Please refer to the example programs.

EXAMPLES:

OPEN "I",#1,"data.dat" ---- opens file "data.dat" for input
OPEN "UC",#1,"localhost",80 ---- opens port 80 of localhost for read and#

write
OPEN "UX:9600,N,8,1,XON,CTS,DTR",#1,"/dev/ttyS1"

---- open COM2 for input and output with 9600:8:N:1 with
software flow control and hardware flow control and also
drop DTR line and raise it again.

OPEN "UY",#1,"0x1c1e:0x0101" --- opens USB device VID=0x1c1e, PID=0x101
for read and write.

SEE ALSO: CLOSE, EXIST(), INPUT, LINEINPUT, PRINT, SEEK, LOF(),

457

6.16. O CHAPTER 6. COMMAND REFERENCE

EOF(), LOC(), BLOAD, LINK, FREEFILE(), CONNECT, IOCTL(), SEND, RECEIVE,

IOCTL()

458

CHAPTER 6. COMMAND REFERENCE 6.16. O

Command: OPENW

Syntax: OPENW n

DESCRIPTION:

Opens a graphic window. There can be up to 16 graphic windows opened.

All graphic output goes to the window which was opened latest. OPENW can be

used to switch between multiple windows. Window 1 is opened automatically on

default when the first graphic command is executed and no other window is already

opened.

SEE ALSO: CLOSEW, MOVEW, SIZEW, TITLEW, ROOTWINDOW, USEWINDOW

459

6.16. O CHAPTER 6. COMMAND REFERENCE

Operator: OR

Syntax: <num-expression1> OR <num-expression2>

DESCRIPTION:

Used to determine if at least ONE OF the conditions is true. If both expression1

AND expression2 are FALSE (zero), the result is FALSE. Returns -1 for true, 0 for

false.

Also used to combine bits in binary number operations. E.g. (1 OR 8) returns

9.

EXAMPLES:

Print 3=3 OR 4<2 Result: -1 (true)
Print 3>3 OR 5<3 Result: 0 (false)

PRINT (30>20 OR 20<30) Result: -1 (true)
PRINT (4 OR 128) Result: 132

SEE ALSO: NAND, AND, NOT, NOR, XOR

*

460

CHAPTER 6. COMMAND REFERENCE 6.16. O

Function: OR()

Syntax: a=OR(b,c)

DESCRIPTION:

This function returns b OR c

SEE ALSO: AND(), OR, AND

461

6.16. O CHAPTER 6. COMMAND REFERENCE

Command: OUT

Syntax: OUT #n,a

DESCRIPTION:

Writes a byte a to an open (output) channel or file #n.

SEE ALSO: PRINT, INP()

462

CHAPTER 6. COMMAND REFERENCE 6.17. P

6.17 P

463

6.17. P CHAPTER 6. COMMAND REFERENCE

Function: PARAM$()

Syntax: p$=PARAM$(i%)

DESCRIPTION:

Returns the i’th word from the commandline. Usually parameters are passed

this way to a program. The PARAM$(0) usually is the name of the program, which

has been excecuted. If there are no more parameter words, an empty string will

be returned.

EXAMPLE:

i=1
WHILE LEN(param$(i))
IF LEFT$(param$(i))="-"
IF param$(i)="--help" OR param$(i)="-h"
@intro
@using

ELSE IF param$(i)="--version"
@intro
QUIT

ELSE IF param$(i)="-o"
INC i
IF LEN(param$(i))
outputfilename$=param$(i)

ENDIF
ENDIF

ELSE
inputfile$=param$(i)

ENDIF
INC i

WEND

464

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: PAUSE

Syntax: PAUSE <sec>

DESCRIPTION:

Pauses <sec> seconds. The resolution of this command is microseconds (in

theory).

Comment:

PAUSE can be interrupted by AFTER and EVERY.

SEE ALSO: DELAY, AFTER, EVERY

465

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PBOX

Syntax: PBOX x1,y1,x2,y2

DESCRIPTION:

Draws a filled box with coordinates x1,y1 and x2,y2.

SEE ALSO: BOX, RBOX, DEFFILL, COLOR

466

CHAPTER 6. COMMAND REFERENCE 6.17. P

Variable: PC

Syntax: i%=PC

DESCRIPTION:

Returns the Program counter value. This is normally the line number of the line

actually processed, or the pointer into bytecode of the code actually processed.

SEE ALSO: SP

467

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PCIRCLE

Syntax: PCIRCLE x%,y%,r%[,a1,a2]

DESCRIPTION:

Draws a filled circle (or sector) at center coordinates x,y with radius r and op-

tional starting angle a1 and ending angle a2 (in radians).

SEE ALSO: CIRCLE, DEFFILL, COLOR

468

CHAPTER 6. COMMAND REFERENCE 6.17. P

Function: PEEK()

Syntax: <int-result>=PEEK(<address>)

DESCRIPTION:

PEEK() reads a byte from an address in memory. The following example dumps

a section of the internal memory near a string t$.

EXAMPLE:

t$="Hallo, this is a string..."
i=varptr(t$)-2000
DO
PRINT "$";HEX$(i,8)’
FOR iu=0 TO 15
PRINT HEX$(PEEK(i+iu) and 255,2)’

NEXT iu
PRINT ’
FOR iu=0 TO 15
a=PEEK(i+iu)
IF a>31
PRINT CHR$(a);

ELSE
PRINT ".";

ENDIF
NEXT iu
PRINT
ADD i,16

LOOP

SEE ALSO: POKE

469

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PELLIPSE

Syntax: PELLIPSE x,y,a,b[,a1,a2]

DESCRIPTION:

Draws a filled ellipse (or or elliptic sector) at center coordinates x,y with radii a

and b.

SEE ALSO: PCIRCLE, ELLIPSE, DEFFILL, COLOR

470

CHAPTER 6. COMMAND REFERENCE 6.17. P

Variable: PI

Syntax: a=PI

DESCRIPTION:

Returns the value of PI. The value of PI is 3.1415926535... etc.

SEE ALSO: SIN(), COS(), EXP()

471

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PIPE

Syntax: PIPE #n1,#n2

DESCRIPTION:

PIPE links two file channels n1 and n2 together to form a pipe. n1 is for reading,

n2 is for writing. Whatever you write to the pipe can be read from it at a different

time. The content is buffered in the kernel. The mechanism is FIFI (0 first in first

out). The biggest advantage is, that you can read and write to it from different

processes (created by FORK()). This allows inter-process communication.

EXAMPLE:

PIPE #1,#2
PRINT #2,"Hello, get me out of the pipe..."
FLUSH #2
LINEINPUT #1,t$
PRINT t$

SEE ALSO: CLOSE, OPEN, FORK()

472

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: PLAYSOUND

Syntax: PLAYSOUND channel,s$

DESCRIPTION:

PLAYSOUND plays a WAV sample on the sound card. s$ must contain the data

from a sound file. (WAV format). The sample is then played once on the channel

c. If c is -1 a free channel is selected. There are 16 channels.

Comment:

Currently this only works in the MS WINDOWS or SDL version. On ANDROID

please use the PLAYSOUNDFILE command, see below.

EXAMPLE:

OPEN "I",#1,"sound.wav"
t$=INPUT$(#1,LOF(#1))
CLOSE #1
PLAYSOUND ,t$

SEE ALSO: SOUND

473

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PLAYSOUNDFILE

Syntax: PLAYSOUNDFILE filename$

DESCRIPTION:

PLAYSOUNDFILE play a soundfile of standard file formats like WAV, OGG,

MP3. The sound is played in the background. Any previously played sounds will

be stopped if they have not been finished so far. (currently this only works in the

ANDROID version of X11-Basic.)

Comment:

You should use absolute paths for the file names.

EXAMPLE:

PLAYSOUNDFILE "/mnt/sdcard/bas/explosion.ogg"
PLAYSOUNDFILE DISR$(0)+"/explosion.ogg"

SEE ALSO: SOUND, PLAYSOUND, DIR$()

474

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: PLIST

Syntax: PLIST [#n]

DESCRIPTION:

Outputs a formatted listing of the actual program in memory. If an open file

channel is given, the listing will be dumped into that file. Also the internal tokens

are printed ans some internal Information. This is intended for internal use only.

EXAMPLE:

> PLIST
0: $00001a | 0,0 |CLS
1: $000279 | 0,0 |PRINT
2: $000279 | 0,1 |PRINT " example how to use the ANSI color spec."
3: $000279 | 0,0 |PRINT
4: $000279 | 0,1 |PRINT "X 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0"
5: $310240 | 12,1 |FOR U=0 TO 3
6: $310240 | 11,1 | FOR J=0 TO 7
7: $310240 | 10,1 | FOR I=0 TO 7
8: $000279 | 0,1 | PRINT AT(J+6,2*I+2+16*U);CHR$(27)+"["+STR$(U)+\

";"+STR$(30+I)+";"+STR$(40+J)+"m *";
9: $320266 | 7,1 | NEXT I

10: $320266 | 6,1 | NEXT J
11: $320266 | 5,1 |NEXT U
12: $000279 | 0,0 |PRINT
13: $00047f | 0,0 |QUIT
14: $0008ff | 0,0 |=?=> 2303

SEE ALSO: LIST, DUMP

475

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PLOT

Syntax: PLOT x,y

DESCRIPTION:

Draws a point (single pixel) at screen coordinate x,y

SEE ALSO: LINE, POINT(), COLOR

476

CHAPTER 6. COMMAND REFERENCE 6.17. P

Function: PNGDECODE$()

Syntax: bmp$=PNGDECODE$(png$)

DESCRIPTION:

Converts the content of png$ which should contain data of a Portable Network

Graphics format into a bmp data format which then can be pasted to the screen

with PUT.

EXAMPLE:

OPEN "I",#1,"image.png"
png$=INPUT$(#1,LOF(#1))

CLOSE #1
bmp$=PNGDECODE$(png$)

PUT 32,32,bmp$! display the image
SHOWPAGE

SEE ALSO: PUT, PNGENCODE$()

477

6.17. P CHAPTER 6. COMMAND REFERENCE

Function: PNGENCODE$()

Syntax: png$=PNGENCODE$(bmp$)

DESCRIPTION:

Converts bitmap data in bmp$ into the Portable Network Graphics format. The

content of png$ can then be saved into a file with ending .png.

EXAMPLE:

SGET screen$! save the graphics screen content in screen$
png$=PNGENCODE$(screen$)
BSAVE "screen.png",varptr(png$),len(png$)

SEE ALSO: GET, SGET, BSAVE, PNGDECODE$()

478

CHAPTER 6. COMMAND REFERENCE 6.17. P

Function: POINT()

Syntax: c=POINT(x,y)

DESCRIPTION:

Returns the color of the graphic point x,y in the current window. The color values

are of the same format than those used by COLOR and returned by GET_COLOR().

SEE ALSO: PLOT, COLOR

479

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: POKE

Syntax: POKE adr%,byte%

DESCRIPTION:

POKE writes a byte to address adr% of the program memory.

SEE ALSO: PEEK(), DPOKE, LPOKE

480

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: POLYFILL

Syntax: POLYFILL n,x(),y()[,x_off,y_off]

DESCRIPTION:

POLYFILL draws a filled polygon with n corners. The x,y coordinates for the

corner points are given in arrays x() and y(). The optional parameters x_off,y_off

will be added to each of these coordinates.

POLYFILL fills the polygon with the color and pattern previously defined by

COLOR and DEFFILL.

SEE ALSO: COLOR, DEFFILL, POLYLINE, POLYMARK

481

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: POLYLINE

Syntax: POLYLINE n,x(),y()[,x_off,y_off]

DESCRIPTION:

POLYLINE draws a polygon with n corners. The x,y coordinates for the corner

points are given in arrays x() and y(). The optional parameters x_off,y_off will be

added to each of these coordinates.

To draw a closed polygon, the first point hast to be equal to the last point.

SEE ALSO: LINE, DEFLINE, COLOR, POLYFILL, POLYMARK

482

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: POLYMARK

Syntax: POLYMARK n,x(),y()[,x_off,y_off]

DESCRIPTION:

POLYMARK marks the corner points of an invisible polygon with n corners. The

x,y coordinates for the corner points are given in arrays x() and y(). The optional

parameters x_off,y_off will be added to each of these coordinates.

POLYMARK marks the points with the shape defined by DEFMARK.

SEE ALSO: COLOR, DEFLINE, POLYLINE, POLYFILL

483

6.17. P CHAPTER 6. COMMAND REFERENCE

Function: POWM()

Syntax: c&=POWM(base&,exp&,m&)

DESCRIPTION:

Return (base raised to exp) modulo m. c=base^exp mod m

A negative exp is supported if an inverse base^-1 mod m exists.

SEE ALSO: INVERT()

484

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: PRBOX

Syntax: PRBOX x1,y1,x2,y2

DESCRIPTION:

Draws a filled box with rounded corners at x1,y1 and x2,y2.

SEE ALSO: BOX, PBOX, DEFFILL, COLOR

485

6.17. P CHAPTER 6. COMMAND REFERENCE

Function: PRED()

Syntax: i=PRED(x)

DESCRIPTION:

PRED() returns the preceding integer of x. It returns the biggest integer value

that is less than x.

EXAMPLE:

PRINT PRED(1.2345) Result: 1
PRINT PRED(0.6) Result: 0
PRINT PRED(-0.5) Result: -1
PRINT PRED(0) Result: -1

486

CHAPTER 6. COMMAND REFERENCE 6.17. P

Function: PRIMORIAL()

Syntax: w&=PRIMORIAL(i%)

DESCRIPTION:

Returns the promorial of i%, i.e. the product of all positive prime numbers <=i%.

Comment:

This function works only in the interpreter and only when used in a direct as-

signment to a big integer variable. The function is not implemented in some of the

X11-Basic versions.

EXAMPLES:

w&=LUCNUM(100) --> Result: 2305567963945518424753102147331756070

SEE ALSO: FIB(), LUCNUM()

487

6.17. P CHAPTER 6. COMMAND REFERENCE

Function: PRG$()

Syntax: t$=PRG$(i%)

DESCRIPTION:

PRG$() returns the i’th BASIC program line (source code). It will of course only

work in the interpreter.

Comment:
This does not work in compiled programs.

SEE ALSO: TRON, TRACE, TRACE$, PC

488

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: PRINT

Syntax: PRINT [[AT(),TAB(),SPC(),COLOR()]a${;’,}]
PRINT [#n,]a$;b;const;... USING ... {;’,}

DESCRIPTION:

The print-statement writes all its arguments to the screen (standard output);

after writing its last argument, print goes to the next line (as in PRINT "Hello ",a$,"

!"); to avoid this automatic newline, place a semicolon (;) after the last argument

(as in PRINT "Please enter your Name:";). To insert a tabulator instead of the

automatic newline append a colon (,), e.g. print "Please enter your Name:", . Note

that print can be abbreviated with a single question mark (?).

The PRINT command has special functions, which modify the appearance of

the text and the position of the text on the screen. Namely AT(), TAB(), SPC() and

COLOR(). Also a powerful formatting is possible with PRINT USING.

If a file channel of an opened file is given (n), the output is written to that file

instead.

EXAMPLE:

PRINT "Hello ",a$," !"
PRINT "Please enter your Name:";
? "A short form..."

SEE ALSO: PRINT AT(), PRINT COLOR(), PRINT TAB(), PRINT SPC(),

489

6.17. P CHAPTER 6. COMMAND REFERENCE

PRINT USING

*

Command: PRINT AT()

Syntax: PRINT AT(line,row)[;...]

DESCRIPTION:

For interactive programs you might want to print output at specific screen loca-

tions. PRINT AT(lin,row) will place the text cursor at row row line lin. The top left

corner of the screen corresponds to the position (1,1).

EXAMPLE:

PRINT AT(4,7);"Test"
PRINT AT(3,1);" This is a Title "

SEE ALSO: GPRINT, COLS, ROWS, CRSCOL, CRSLIN

*

490

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: PRINT TAB() SPC()

Syntax: PRINT TAB(x)[;...]
PRINT SPC(x)[;...]

DESCRIPTION:

TAB(x) and SPC(x) move the text cursor x positions to the right. TAB starts at

the beginning of the line, SPC at current cursor position. So TAB is an absolute

and SPC a relative movement.

EXAMPLE:

PRINT "Hallo";TAB(30);"Test"
PRINT "Hallo";SPC(30);"Test"

SEE ALSO: GPRINT, COLS, ROWS, CRSCOL, CRSLIN

*

Command: PRINT COLOR()

491

6.17. P CHAPTER 6. COMMAND REFERENCE

Syntax: PRINT COLOR(s[,s2,...])

DESCRIPTION:

Changes the foreground and background text color and also sets the style at-

tributes for the console text.

The COLOR statement s can be of three types depending on their number

range. Their meaning is:

Text Mode: Text color: Background color:

0 default setting 30 black 40 black
1 intensive 31 red 41 red
2 dark 32 green 42 green

33 yellow 43 yellow
4 underline 34 blue 44 blue
5 blink 35 magenta 45 magenta

36 cyan 46 cyan
7 reverse 37 white 47 white

You can pass one or more arguments to the COLOR() function to combine the

attributes and colors.

EXAMPLE:

PRINT COLOR(32,2);"Hallo"

SEE ALSO: COLOR()

492

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: PRINT USING

Syntax: PRINT a$ USING format$

DESCRIPTION:

To control the way numbers are printed, use the PRINT USING statement:

PRINT 12.34 USING "###.####" produces 12.3400. The format string ("###.####")

consists of hashes (#) with one optional dot and it pictures the appearance of the

number to print. For all the details of this command please read the X11-Basic

user manual.

EXAMPLE:

PRINT 12.34 USING "###.####"

SEE ALSO: STR$(), USING$()

493

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PROCEDURE

Syntax: PROCEDURE procname [(p1 [,p2] ...)] * RETURN

DESCRIPTION:

PROCEDURE starts a user-defined multi-line subroutine which can be exe-

cuted by the GOSUB command. Any number of parameters may be passed to

the PROCEDURE via the parameter list. The variables in that list act like local

variables inside the subroutine.

All variables declared inside the PROCEDURE block are global variables unless

you declare them as local with the LOCAL command. Variables in the calling line

reach the PROCEDURE "by-value" unless the VAR keyword is used in the calling

line. In that case, the variable is passed "by-reference" to the PROCEDURE so

that the PROCEDURE "gets" the variable and not only its value. Variables passed

"by-reference" can be changed by the PROCEDURE. The PROCEDURE block

is terminated by the RETURN statement which resumes execution of the calling

expression. Unlike a FUNCTION-subroutine, a PROCEDURE can not return a

value.

Procedures are usually defined at the end of the program source code. The

program flow may not hit a procedure or function definition. In this case it would

produce an error 36 - error in program structure. If you want them in the middle of

the "main" part, use GOTOs to jump over them.

EXAMPLE:

PRINT "this is the main part of the program
GOTO a
PROCEDURE b
PRINT "this is inside the procedure..."

RETURN

494

CHAPTER 6. COMMAND REFERENCE 6.17. P

a:
PRINT "go on"
GOSUB b
END

SEE ALSO: GOSUB, RETURN, LOCAL, FUNCTION

495

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PROGRAM

Syntax: PROGRAM <title>

DESCRIPTION:

This statement does nothing. it is ignored. It can be used to specify a title to

the program. In future releases this statement may be used to pass some options

to the compiler.

SEE ALSO: REM

496

CHAPTER 6. COMMAND REFERENCE 6.17. P

Function: PTST()

Syntax: c=PTST(x,y)

DESCRIPTION:

PTST returns the color of the graphic point x,y in the current window. It is the

same as POINT().

SEE ALSO: POINT(), PLOT

497

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PUBLISH

Syntax: PUBLISH topic$,message$[,qos,retained]

DESCRIPTION:

Publishes a message to the topic on a (mqtt) broker. You can optionally specify

the quality of service (0-2) and the retained-flag (0,1). By default the retained flag

is 1 if the qos is 0. If qos>0 the default for retained is 1.

EXAMPLE:

BROKER "tcp://localhost:1883"
PUBLISH "TIME",time$

SEE ALSO: BROKER, SUBSCRIBE

498

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: PUT

Syntax: PUT x,y,var$[,scale[,trans[,xs,ys,w,h],angle]]

DESCRIPTION:

Maps a graphic bitmap contained in var$ into the graphic window at coordinate

x,y. The picture can be scaled by scale factor (default: 1). The file or data format

used in var$ is a BMP file format. It can contain uncompressed bitmaps optionally

with alpha channel.

If you want to paint only a portion of the image you can specify the coordinates,

width and height of a rectangular area of the source image (after scaling).

(*not implemented yet: a rotation angle and if transparency is given (trans) and

the picture has a color table, this is interpreted as a color index, which will be

treated as transparent. If an alpha channel is present, this is used as a threshold

for the alpha value (0-255). Default is 32. If the coordinates xs,ys,w,h are given,

only a rectangular part of the image is mapped.)

If you want to use .png files for your icons to be mapped with PUT, first convert

them with PNGDECODE$() to BMP. Also the alpha channel can be preserved.

The images also can be included into the sourcecode of the program. See the tool

inline.bas on how to make inline data.

Comment:

You must avoid to put the image or parts of the image outside of the screen.

Always make sure, that the image or the specified portion of the image fits on the

screen.

499

6.17. P CHAPTER 6. COMMAND REFERENCE

EXAMPLE:

OPEN "I",#1,"picture.bmp"
t$=INPUT$(#1,LOF(#1))
CLOSE #1
CLEARW
PUT 0,0,t$,2 ! scaled by a factor of 2
PUT 100,100,t$,,,0,32,32,32 ! 32x32 portion of the image is put
SHOWPAGE

SEE ALSO: GET, PUT_BITMAP, PNGDECODE$()

500

CHAPTER 6. COMMAND REFERENCE 6.17. P

Command: PUTBACK

Syntax: PUTBACK [#n,]a

DESCRIPTION:

Puts a character back into an input channel #n.

SEE ALSO: OUT

501

6.17. P CHAPTER 6. COMMAND REFERENCE

Command: PUT_BITMAP

Syntax: PUT_BITMAP bitmp$,x,y,w,h

DESCRIPTION:

Maps a monochrome bitmap contained in bitmp$ into the graphic window at

coordinate x,y. The bitmap is stored in raw format, so you must specify the size

of the bitmap with w (width) and h (height) in pixels. The Bitmap is drawn with the

color set by COLOR and transparency if set with GRAPHMODE. You must avoid

to put the bitmap or parts of it outside the screen. The bitmap data format is such

that the least significant bit of each byte is drawn to the left. Each line must start

on a new byte. So a 9x12 Bitmap stores in 24 Bytes.

SEE ALSO: PUT, COLOR, GRAPHMODE

502

CHAPTER 6. COMMAND REFERENCE 6.18. Q

6.18 Q

503

6.18. Q CHAPTER 6. COMMAND REFERENCE

Command: QUIT

Syntax: QUIT [<return-code>]

DESCRIPTION:

QUIT exits the interpreter. You may set a <return-code> which will be passed

to the program which has called the interpreter.

SEE ALSO: END

504

CHAPTER 6. COMMAND REFERENCE 6.19. R

6.19 R

505

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: RAD()

Syntax: r=RAD(x)

DESCRIPTION:

Converts x from degrees to radians.

EXAMPLE:

PRINT RAD(180) ! Result: 3.14159265359

SEE ALSO: DEG()

506

CHAPTER 6. COMMAND REFERENCE 6.19. R

Function: RADIX$()

Syntax: a$=RADIX$(x%[,base%[,len%]])

DESCRIPTION:

RADIX$() returns a string containing the representation of the integer number

x% in base base%. A minimal length of the string can be specified with len%. If

len% is bigger than necessary, preceiding zeros will be used to fill in. The base%

can be between 2 and 62 inclusive. If base% is not specified it defaults to 62. The

symbols used are digits from 0 to 9 then capital letters A to Z and then lowercase

letters a to z, followed by @ and $.

EXAMPLE:

PRINT RADIX$(180,17) ! Result: AA

SEE ALSO: BIN$(), OCT$(), HEX$()

507

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: RAND()

Syntax: r%=RAND(0)

DESCRIPTION:

RAND() returns a pseudo-random integer number between 0 (inclusive) and

2147483647. The sequence of pseudo-random numbers is identical each time

you start the interpreter unless the RANDOMIZE statement is used prior to using

RANDOM(): RANDOMIZE seeds the pseudo-random number generator to get a

new sequence of numbers from RANDOM().

Comment:

On WINDOWS operating systems, the RAND() function returns a pseudo-random

integer number between 0 (inclusive) and 32767.

SEE ALSO: RND(), RANDOMIZE, GASDEV

EXAMPLE:

RANDOMIZE TIMER
FOR i=0 TO 10000
a=MAX(a,RAND(0))

NEXT i
PRINT a,HEX$(a)

508

CHAPTER 6. COMMAND REFERENCE 6.19. R

SEE ALSO: RANDOM(), RND(), RANDOMIZE, GASDEV

509

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: RANDOM()

Syntax: r%=RANDOM(maximum%)
r&=RANDOM(maximum&)
r=RANDOM(maximum)
r#=RANDOM(maximum#)

DESCRIPTION:

RANDOM() returns a pseudo-random (integer) number between 0 (inclusive)

and maximum% (exclusive). The sequence of pseudo-random numbers is identical

each time you start the interpreter unless the RANDOMIZE statement is used prior

to using RANDOM(): RANDOMIZE seeds the pseudo-random number generator

to get a new sequence of numbers from RANDOM(). If the argument is a floating

point or complex expression, a random floatingpoint or complex number between

0 (inclusive) and maximum (exclusive) is returned.

Comment:

If the argument to the RANDOM() function is negative, a random number be-

tween the argument (exclusive) and zero (inclusive) is returned.

Comment:

WINDOWS operating systems uses a 15 bit random generator only and linux

flavours a 31 bit random generator.

510

CHAPTER 6. COMMAND REFERENCE 6.19. R

EXAMPLE:

PRINT RANDOM(10) ! Result: 8
PRINT RANDOM(-10) ! Result: -8

PRINT RANDOM(10.1) ! Result: 8.065922004714
PRINT RANDOM(1+2i) ! (0.9116473579368+1.596880066952i)
PRINT RANDOM(10000000000000000000) ! Result: 7314076133279565627

SEE ALSO: RND(), RANDOMIZE, GASDEV

511

6.19. R CHAPTER 6. COMMAND REFERENCE

Command: RANDOMIZE

Syntax: RANDOMIZE [<seed-expression>]

DESCRIPTION:

RANDOMIZE seeds the pseudo-random number generator to get a new se-

quence of numbers from RND(). Recommended argument to RANDOMIZE is a

"random" number to randomly select a sequence of pseudo-random numbers. If

RANDOMIZE is not used then the sequence of numbers returned by RND() will be

identical each time the interpreter is started. If no argument is given, the TIMER

value will be used as a seed.

SEE ALSO: RND(), TIMER

512

CHAPTER 6. COMMAND REFERENCE 6.19. R

Command: RBOX

Syntax: RBOX x1,y1,x2,y2

DESCRIPTION:

Draws a rectangle with rounded corners from the two diagonally opposite corner

points ’x1,y1’ and ’x2,y2’

SEE ALSO: BOX, PBOX, PRBOX

513

6.19. R CHAPTER 6. COMMAND REFERENCE

Command: READ

Syntax: READ var[,var2, ...]

DESCRIPTION:

Reads constant values from a DATA command and assigns them to a variable

’var’. Reading is taken from the last point a RESTORE was done (if any).

SEE ALSO: DATA, RESTORE

514

CHAPTER 6. COMMAND REFERENCE 6.19. R

Function: REAL()

Syntax: x=REAL(z#)

DESCRIPTION:

Returns the real part of the complex number z#.

EXAMPLE:

PRINT REAL(1-2i) Result: 1

SEE ALSO: CONJ(), IMAG()

515

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: REALLOC

Syntax: adr_new%=REALLOC(adr%,newsize%)

DESCRIPTION:

The realloc() function changes the size of the memory block pointed to by adr%

to newsize% bytes. The contents will be unchanged in the range from the start of

the region up to the minimum of the old and new sizes. If the new size is larger than

the old size, the added memory will not be initialized. If adr% is 0, then the call is

equivalent to MALLOC(newsize%), for all values of newsize; if newsize is equal to

zero, and adr% is not 0, then the call is equivalent to FREE(adr%). Unless adr%

is 0, it must have been returned by an earlier call to MALLOC(), or REALLOC(). If

the area pointed to was moved, a FREE(adr%) is done.

SEE ALSO: MALLOC(), FREE

516

CHAPTER 6. COMMAND REFERENCE 6.19. R

Command: RECEIVE

Syntax: RECEIVE #n,t$[,a]

DESCRIPTION:

RECEIVE is used to receive messages t$ from a socket or USB-device #n,

which has been opened with OPEN before. If a is given, this variable will take the

host address of the sender (IPv4 32 bit format) or the bluetooth device ID.

SEE ALSO: OPEN, SEND

517

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: REGEXP()

Syntax: a%=REGEXP(a$,r$)

DESCRIPTION:

Searches to see if a substring matching the regular expression r$ is present in

a$ and returns its position. If no matching substring is found in a$, 0 is returned.

In case of an ERROR in the regular expression, -1 is returned.

Comment:

Regular expressions are very powerful in pattern matching. Compared to IN-

STR() or GLOB() you have nearly infinite flexibility. If you do not know what a

regular expression is or what the syntax of it should be, please look elsewhere for

information. An full explanation would be too much for this manual. Unfortunately

there are many different standards for regular expression. The Implementation

uses here is the so called "POSIX.2" type. Note: Zero-Bytes (CHR$(0)) cannot be

matched and will indicate the end of the content of a$.

Comment:

This command is currently no available in the WINDOWS version of X11-Basic.

EXAMPLES:

t$="This 1 is nice 2 so 33 for 4254"
PRINT REGEXP(t$,"([[:digit:]]+)[^[:digit:]]+([[:digit:]]+)")

518

CHAPTER 6. COMMAND REFERENCE 6.19. R

Result: 6

SEE ALSO: INSTR(), RINSTR(), GLOB(), MATCH()

519

6.19. R CHAPTER 6. COMMAND REFERENCE

Command: RELSEEK

Syntax: RELSEEK [#]n,d

DESCRIPTION:

Place file pointer on new relative position d which means it moves the file pointer

forward (d>0) or backwards (d<0) d bytes.

SEE ALSO: SEEK, LOC(), LOF(), EOF()

520

CHAPTER 6. COMMAND REFERENCE 6.19. R

Command: REM ABBREV. ’

Syntax: REM This is a comment
’ This also is a comment

DESCRIPTION:

This command reserves the entire line for a comment.

Comment:

Note, that rem is an abbreviation for remark.

Do use comments in your programs, the more the better. Yes, the program will

become longer, but it’s nice to be able to understand a well-documented program

that you’ve never seen before. Or one of your own masterpieces that you haven’t

looked at for a couple of years. Don’t worry about the speed of your program, the

slowdown is only marginally. A comment after ’!’ has no influence on the speed of

a program at all, so you can use these everywhere.

SEE ALSO: !

521

6.19. R CHAPTER 6. COMMAND REFERENCE

Command: RENAME

Syntax: RENAME oldpathfilename$,newpathfilename$

DESCRIPTION:

RENAME renames a file, moving it between directories if required. If new-

pathfilename$ already exists it will be atomically replaced. oldpathfilename$ can

specify a directory. In this case, newpathfilename$ must either not exist, or it must

specify an empty directory.

EXAMPLE:

RENAME "myfile.dat","/tmp/myfile.dat"

SEE ALSO: KILL, OPEN

522

CHAPTER 6. COMMAND REFERENCE 6.19. R

Command: REPEAT

Syntax: REPEAT ... UNTIL <expression>

DESCRIPTION:

REPEAT initiates a REPEAT...UNTIL loop. The loop ends with UNTIL and ex-

ecution reiterates until the UNTIL <expression> is not FALSE (not null). The loop

body is executed at least once.

SEE ALSO: DO, LOOP, UNTIL, EXIT IF, BREAK, WHILE

EXAMPLE:

REPEAT
INC n

UNTIL n=10

523

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: REPLACE$()

Syntax: n$=REPLACE$(t$,s$,r$)

DESCRIPTION:

REPLACE$() returns string-expression where all search strings s$ have been

replaced by r$ in t$.

SEE ALSO: INSTR(), WORT_SEP

EXAMPLE:

PRINT REPLACE$("Hello","l","w")
Result: Hewwo

524

CHAPTER 6. COMMAND REFERENCE 6.19. R

Command: RESTORE

Syntax: RESTORE [<label>]

DESCRIPTION:

RESTORE sets the position DATA is read from to the first DATA line of the pro-

gram (or to the first DATA line after <label> if RESTORE is used with an argument).

SEE ALSO: DATA, READ

EXAMPLE:

READ a, b, c
RESTORE
READ a, b, c
DATA 1, 2, 3

525

6.19. R CHAPTER 6. COMMAND REFERENCE

Command: RESUME

Syntax: RESUME
RESUME NEXT
RESUME <label>

DESCRIPTION:

The RESUME command is especially meaningful with error capture (ON ER-

ROR GOSUB) where it allows a reaction to an error. Anyway, X11-Basic allows

the us of RESUME <label> everywhere in the program (instead of GOTO <label>),

and can be used to jump out of a subroutine. If you jump into another Subroutine,

you must not reach its RETURN statement. RESUME is a bad command and I

dislike it very much.

RESUME repeats the erroneous command. RESUME NEXT resumes program

execution after an incorrect command. RESUME <label> branches to the <label>.

If a fatal error occurs only RESUME <label> is possible

Comment:

**** RESUME is still not working. If you use ON ERROR GOSUB to a subroutine

then RESUME NEXT is the default if the subroutine reaches a RETURN. If you

want to resume somewhere else you can just GOTO out of the subroutine. This is

possible, but leaves the internal stack pointer incremented, so you should not do

this too often during run-time. Otherwise there will be a stack overflow after 200

events.

**** looks like this also happens with ON ERROR GOTO.

*** In future versions of X11-Basic there might be a RESUME <label> command

which properly resets the stack. If you want this to be fixed, please send me an

email with your test program.

526

CHAPTER 6. COMMAND REFERENCE 6.19. R

SEE ALSO: ON ERROR, GOTO, ERROR

527

6.19. R CHAPTER 6. COMMAND REFERENCE

Command: RETURN

Syntax: RETURN
RETURN <expression>

DESCRIPTION:

RETURN terminates a PROCEDURE reached via GOSUB and resumes execu-

tion after the calling line. Note that code reached via ON ERROR GOSUB should

be terminated with a RESUME NEXT, not with RETURN.

RETURN <expression> states the result of the expression as a result of a user

defined function. This can not be used in PROCEDURES but in FUNCTIONS. The

expression must be of the type the function was.

EXAMPLE:

PROCEDURE testroutine
PRINT "Hello World !"

RETURN
FUNCTION givemefive

RETURN 5
ENDFUNCTION

SEE ALSO: PROCEDURE, FUNCTION, ENDFUNCTION, RESUME, GOSUB, @,

ON ERROR

528

CHAPTER 6. COMMAND REFERENCE 6.19. R

Function: REVERSE$()

Syntax: a$=REVERSE$(t$)

DESCRIPTION:

Return the reverses of a string.

EXAMPLE:

print reverse$("Markus Hoffmann")
Result: nnamffoH sukraM

SEE ALSO: UPPER$(), TRIM$()

529

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: RIGHT$()

Syntax: a$=RIGHT$(t$[,number])

DESCRIPTION:

RIGHT$() returns the specified number of characters from its string argument,

beginning at its right side. If the number of characters is not specified then RIGHT$()

returns only the rightmost character.

SEE ALSO: LEFT$(), MID$()

EXAMPLE:

PRINT RIGHT$("Hello",1)
Result: o

530

CHAPTER 6. COMMAND REFERENCE 6.19. R

Function: RIGHTOF$()

Syntax: a$=RIGHTOF$(t$,s$)

DESCRIPTION:

RIGHTOF$() returns the right part of t$ at the position of the first occurrence of

s$ in t$. If s$ is not contained in t$, an empty string is returned.

SEE ALSO: RIGHTOF$(), MID$()

EXAMPLE:

PRINT RIGHTOF$("Hello","ll")
Result: o

531

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: RINSTR()

Syntax: <int-result>=RINSTR(s1$,s2$[,n])

DESCRIPTION:

Operates in same way as INSTR except that search begins at the right end of

s1$.

If the string s2$ is not found in s1$, a 0 is returned. If found, the start position

of s2$ in s1$ is returned.

If n is specified, the comparison starts at at position n instead of the end of the

string s1$

SEE ALSO: INSTR()

532

CHAPTER 6. COMMAND REFERENCE 6.19. R

Function: RLD$()

Syntax: a$=RLD$(a$)

DESCRIPTION:

Does a run length decoding of string a$. This function reverses the run length

encoding function RLE$() on a string.

In the input string, any two consecutive characters with the same value flag a

run. A byte following those two characters gives the count of additional(!) repeat

characters, which can be anything from 0 to 255.

EXAMPLE:

PRINT RLD$("1233"+CHR$(8)+"456")
Result: 123333333333456

SEE ALSO: RLE$()

533

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: RLE$()

Syntax: a$=RLE$(a$)

DESCRIPTION:

Does a run length encoding of string a$.

In the output string, any two consecutive characters with the same value flag a

run. A byte following those two characters gives the count of additional(!) repeat

characters, which can be anything from 0 to 255. The resulting string might be

shorter than the input string if there are many equal characters following each

other. In the worst case the resulting string will be 50% longer.

EXAMPLE:

PRINT RLE$("123.....................................456")
Result: 123..#456

SEE ALSO: RLD$()

534

CHAPTER 6. COMMAND REFERENCE 6.19. R

Command: RMDIR

Syntax: RMDIR <path-name>

DESCRIPTION:

RMDIR deletes a directory, which must be empty.

EXAMPLE:

RMDIR "old"

SEE ALSO: MKDIR, CHDIR

535

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: RND()

Syntax: r = RND([<dummy>])

DESCRIPTION:

RND() returns a pseudo-random number between 0 (inclusive) and 1 (exclu-

sive) with a uniform distribution. The sequence of pseudo-random numbers is

identical each time you start the interpreter unless the RANDOMIZE statement is

used prior to using RND(): RANDOMIZE seeds the pseudo-random number gen-

erator to get a new sequence of numbers from RND(). The optional dummy pa-

rameter is ignored. The granularity of the random values depends on the operating

system and is usually only 31 bits.

Comment:

On WINDOWS operating systems, the granularity of the RND() function is only

15 bit.

SEE ALSO: RANDOMIZE, GASDEV(), RANDOM()

EXAMPLE:

PRINT RND(1)
Result: 0.3352227557149

536

CHAPTER 6. COMMAND REFERENCE 6.19. R

Function: ROL()

Syntax: i%=ROL(j%,n%[,b%])

DESCRIPTION:

Returns the bit pattern in j% rotated left by n% bits. The optional field length

b% defaults to 32.

EXAMPLE:

PRINT ROL(8,2) ! Result: 32
PRINT ROL(8,2,4) ! Result: 2

SEE ALSO: SHL(), ROR()

537

6.19. R CHAPTER 6. COMMAND REFERENCE

Command: ROOTWINDOW

Syntax: ROOTWINDOW

DESCRIPTION:

Directs all following graphic output to the root window of the screen. (root win-

dow = desktop background).

Comment:

The root window is usually the desktop background. Not in any case is the root

window really shown. On linux systems the GNOME desktop always overwrites the

root window, so output of X11-Basic is not visible. Use another windowmanager

like fvwm2 instead.

SEE ALSO: USEWINDOW

538

CHAPTER 6. COMMAND REFERENCE 6.19. R

Function: ROOT()

Syntax: b&=ROOT(a&,n%)

DESCRIPTION:

Returns the truncated integer part of the nth root of a.

SEE ALSO: SQRT()

539

6.19. R CHAPTER 6. COMMAND REFERENCE

Function: ROR()

Syntax: i%=ROR(j%,n%[,b%])

DESCRIPTION:

Returns the bit pattern in j% rotated right by n% bits. The optional field length

b% defaults to 32.

EXAMPLE:

PRINT ROR(8,2) ! Result: 2
PRINT ROR(8,2,3) ! Result: 8
PRINT ROR(8,4,8) ! Result: 128

SEE ALSO: SHR(), ROL()

540

CHAPTER 6. COMMAND REFERENCE 6.19. R

Function: ROUND()

Syntax: b=ROUND(a[,n])

DESCRIPTION:

Rounds off a value to n fractional digits. If n<0: round to digits in front of the

decimal point.

SEE ALSO: INT(), FIX(), FLOOR(), TRUNC()

541

6.19. R CHAPTER 6. COMMAND REFERENCE

Variable: ROWS

Syntax: n%=ROWS

DESCRIPTION:

Returns the number of rows of the text terminal (console).

EXAMPLE:

PRINT COLS, ROWS ! Result: 80 24

SEE ALSO: COLS, PRINT AT(), CRSCOL, CRSLIN

542

CHAPTER 6. COMMAND REFERENCE 6.19. R

Command: RSRC_FREE

Syntax: RSRC_FREE

DESCRIPTION:

RSRC_FREE unloads the graphical resources loaded with RSRC_LOAD and

frees any memory assigned to it.

SEE ALSO: RSRC_LOAD

543

6.19. R CHAPTER 6. COMMAND REFERENCE

Command: RSRC_LOAD

Syntax: RSRC_LOAD filename$

DESCRIPTION:

RSRC_LOAD loads a GEM resource file (*.rsc)-File (ATARI ST format) into

memory and prepares it to be used.

SEE ALSO: RSRC_FREE, OBJ_DRAW(), FORM_DO()

544

CHAPTER 6. COMMAND REFERENCE 6.19. R

Command: RUN

Syntax: RUN

DESCRIPTION:

starts program execution (RUN)

SEE ALSO: STOP, CONT, LOAD

545

6.20. S CHAPTER 6. COMMAND REFERENCE

6.20 S

546

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SAVE

Syntax: SAVE [a$]

DESCRIPTION:

SAVE writes the BASIC-program into a file with the name a$. If no filename is

specified the program will be saved to the file which was loaded before.

EXAMPLE:

SAVE "new.bas"

SEE ALSO: LOAD

547

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SAVESCREEN

Syntax: SAVESCREEN t$

DESCRIPTION:

Saves the whole Graphic-screen (desktop) into a file with name t$. The graphics

format is XWD (X Window Dump image data) on UNIX systems and BMP (device

independent bitmap image) else.

EXAMPLE:

SAVESCREEN "fullscreen.bmp"

SEE ALSO: SAVEWINDOW

548

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SAVEWINDOW

Syntax: SAVEWINDOW t$

DESCRIPTION:

Saves the actual X11-Basic Graphic-Window into a file with name t$. The

graphics format is XWD (X Window Dump image data) on UNIX systems and BMP

(device independent bitmap image) else.

EXAMPLE:

SAVEWINDOW "window.bmp"

SEE ALSO: SAVESCREEN, SGET

549

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SCOPE

Syntax: SCOPE a(),typ,yscale,yoffset
SCOPE y(),x(),typ,yscale,yoffs,xscale,xoffs

DESCRIPTION:

SCOPE performs an extended polyline on one or two dimensional data. Draw-

ing and scaling is done very fast. It is possible to plot a million points and lines at

once.

The variable typ specifies the type of plot:

0 -- draw a polyline
1 -- draw points (without lines)
2 -- draw impulses

With xscale, yscale, xoffset and yoffset you can specify a scaling function to the

data.

EXAMPLE:

l=2^10
DIM a(l)
SIZEW ,l,400
CLEARW
FOR i=0 TO l-1
a(i)=200/100*@si(3*i/512*2*pi)+i/100*sin(20*i/512*2*pi)

NEXT i
COLOR COLOR_RGB(1,0.5,0)
SCOPE a(),1,-10,300 ! Plot the original function
FFT a() ! Do a Fourier transformation
’ Normalize
FOR i=0 TO l-1
a(i)=a(i)/SQRT(l)

NEXT i
SHOWPAGE

550

CHAPTER 6. COMMAND REFERENCE 6.20. S

PAUSE 1
FOR i=4 TO 86
a(i)=0

NEXT i
FOR i=l-1 DOWNTO l-86
a(i)=0

NEXT i
FFT a(),-1
COLOR COLOR_RGB(0,1/2,1)
SCOPE a(),0,-10/SQRT(l),300 ! Plot the modified function
SHOWPAGE
END
DEFFN si(x)=x mod pi

SEE ALSO: LINE, POLYLINE

551

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SCREEN

Syntax: SCREEN n

DESCRIPTION:

This commands select the Screen-Resolution in SVGA-Mode. It is only avail-

able in the SVGA-Version of X11-Basic and has no effect on any other versionid

X11-Basic.

Following Screen modes are supported:

n Mode
================================
0 TEXT-Mode, no graphics
1 320x 200 16 colors
2 640x 200 16 colors
3 640x 350 16 colors
4 640x 480 16 colors
5 320x 200 256 colors
6 320x 240 256 colors
7 320x 400 256 colors
8 360x 480 256 colors
9 640x 480 monochrome
10 640x 480 256 colors
11 800x 600 256 colors
12 1024x 768 256 colors
13 1280x1024 256 colors
14 320x200 15Bit colors
15 320x200 16Bit colors
16 320x200 24Bit colors
17 640x480 15Bit colors
18 640x480 16Bit colors

552

CHAPTER 6. COMMAND REFERENCE 6.20. S

19 640x480 24Bit colors
20 800x600 15Bit colors
21 800x600 16Bit colors
22 800x600 24Bit colors
23 1024x768 15Bit colors
24 1024x768 16Bit colors
25 1024x768 24Bit colors
26 1280x1024 15Bit colors
27 1280x1024 16Bit colors
28 1280x1024 24Bit colors
29 800x 600 16 colors
30 1024x 768 16 colors
31 1280x1024 16 colors
32 720x 348 monochrome Hercules emulation mode
33-37 32-bit per pixel modes.
38-74 additional resolutions

SEE ALSO: VGA-Version of X11-Basic

553

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SEEK

Syntax: SEEK #n[,d]

DESCRIPTION:

Place file pointer of channel n on new absolute position d (Default on position 0

which is the beginning of the file.)

SEE ALSO: RELSEEK, LOC(), EOF(), LOF()

554

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SELECT

Syntax: SELECT <expression>

DESCRIPTION:

Divides a program up into different blocks depending on the result of the expres-

sion. Only the integer part of the result of the expression is used to compare with

the values given by CASE statements. Program flow branches to the block of code,

given by the CASE statement which matches the value of expression. If no CASE

block matches, it branches to the DEFAULT block. If no DEFAULT block is given

and none of the CASE blocks match, the program resumes after the ENDSELECT.

Also after the CASE block is finished, the program resumes after the ENDSELECT.

You must not use GOTO out of the SELECT–ENDSELECT block. (although in the

interpreter this works, the compiler will not compile it correctly.)

You can leave the block any time with BREAK.

Comment:

The statement after SELECT will be evaluated/calculated only once, then com-

pared to all the values given by the CASE statements, one by one in the order

given. If the first matches, the others will not be evaluated anymore. The DE-

FAULT section will always match, if no other match before was found. BREAK can

be used, but there is no way to CONTINUE with the SELECT after one (CASE)

BLOCK was entered.

Code between SELECT and the first CASE or DEFAULT statement will be dead

code and should be avoided.

If you need to compare floating point (real) numbers, you must use a IF – ELSE

IF – ELSE construct.

555

6.20. S CHAPTER 6. COMMAND REFERENCE

EXAMPLE:

i=5
SELECT i
CASE 1
PRINT 1

CASE 2,3,4
PRINT "its 2,3, or 4"

CASE 5
PRINT 5

DEFAULT
PRINT "default"

ENDSELECT

SEE ALSO: CASE, DEFAULT, ENDSELECT, BREAK, IF

556

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SEND

Syntax: SEND #n,msg$[,adr%,port%]

DESCRIPTION:

SEND is used to transmit a message via fast UDP datagrams to another socket

which may be on another host. Or, send is used to send a data packet to a pre-

viously opened USB device. Or, send is used to transmit a data packet to to a

previously opened BLUETOOTH L2CAP connection.

Send with only two parameters may be used only when the socket is in a con-

nected state (see CONNECT), otherwise the destination address and the port has

to be specified.

The address of the target is given by adr%, which usually contains a IP4 ad-

dress (e.g. cvl(chr$(127)+chr$(0)+chr$(0)+chr$(1)) which corresponds to 127.0.0.1).

msg$ can be an arbitrary message with any data in it. The length of the mes-

sage must not exceed 1500 Bytes. If the message is too long to pass automically

through the underlying protocol, an error occurs, and the message is not transmit-

ted.

No indication of failure to deliver is implicit in a send.

When the message does not fit into the send buffer of the socket, send blocks.

The OUT?() function may be used to determine when it is possible to send more

data.

Comment:

SEND is currently working for USB and Bluetooth devices only in connected

state.

557

6.20. S CHAPTER 6. COMMAND REFERENCE

EXAMPLE:

port=5555
server$="localhost" ! if the receiver runs on the same computer
OPEN "UU",#1,"sender",port+1
CONNECT #1,server$,port
i=0
DO
@sendmessage(i,"The time is: "+date$+" "+time$+" "+str$(i))
WHILE INP?(#1)
t$=@getmessage$()
IF LEN(t$)
a=CVI(LEFT$(t$,2))
PRINT "received: ";a;" ";right$(t$,len(t$)-2)

ENDIF
WEND
INC i
PAUSE 1

LOOP
CLOSE #1
END
PROCEDURE sendmessage(id,m$)
PRINT "sending packet #";id
SEND #1,mki$(id)+m$

RETURN
FUNCTION getmessage$()
LOCAL t$,adr
RECEIVE #1,t$,adr
pid=CVI(MID$(t$,1,2))
IF pid=0
@sendACK(pid,adr)

ENDIF
RETURN t$

ENDFUNCTION
PROCEDURE sendACK(pid,adr)
@sendmessage(6,CHR$(pid),adr)

RETURN

SEE ALSO: OPEN, CLOSE, CONNECT, RECEIVE, OUT?()

558

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SENSOR

Syntax: SENSOR ON
SENSOR OFF

DESCRIPTION:

Switches the sensor phalanx on or off. Sensors can be accelerometer, tem-

perature, pressure, light, humidity, gyroscope, etc... They need to be switched on,

before you can use them. If you do not use them anymore, you should switch them

off to save battery.

SEE ALSO: GPS, SENSOR?, SENSOR()

559

6.20. S CHAPTER 6. COMMAND REFERENCE

Variable: SENSOR?

Syntax: a=SENSOR?

DESCRIPTION:

This system variable is 0 if no sensors are available on this hardware platform,

otherwise the number of usable sensors is returned. Sensors can be accelerome-

ter, temperature, pressure, light, humidity, gyroscope, etc...

SEE ALSO: GPS, SENSOR, SENSOR()

560

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SENSOR()

Syntax: a=SENSOR(n)

DESCRIPTION:

Readout the n-th value of the sensor-phalanx. Usually

n=0 --> Temperature
1 --> Ambient light
3 --> Proximity
4,5,6 --> Orientation x,y,z
7,8,9 --> Gyroscope x,y,z
10,11,12 --> Magnetic field x,y,z
13,14,15 --> Accelerometer x,y,z

SEE ALSO: GPS, SENSOR, SENSOR?, ANDROID?, GPIO()

561

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SETENV

Syntax: SETENV t$,a$

DESCRIPTION:

Sets the environment variable t$ of the operating system to the value given

by a$. The environment variables are not persistent after a reboot or restart of

X11-Basic.

(This command is not yet implemented)

EXAMPLE:

SETENV "LASTLAUNCHED",DATE$+" "+time$

SEE ALSO: ENV$()

562

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SETFONT

Syntax: SETFONT t$

DESCRIPTION:

Loads and sets a font for graphical text commands. t$ may be

"SMALL" or "5x7" for a small font,
"MEDIUM or "8x8 for a medium sized font,
"BIG" or "8x16" for a big font,
"LARGE" or "16x32" for an even bigger font,
"HUGE" or "24x48" for an even bigger font,
"GIANT" or "32x64" for a gigantic font size.

This setting affects the text style and size of the commands TEXT and GPRINT.

With UNIX and the X-WINDOW system, the font name t$ may be any valid font

name or pattern. On other platforms true-type font filenames can be used. This

way, also proportional fonts can be used.

Comment:

The support for true-type .TTF fonts is not usable at the moment. You should

prefer the standard names given obove instead of platform dependant names to

stay platform independant.

Currently the font setting is overwritten by ALERT, FILESELCT and others every

time they are used. It is planned to have this independant and also have a way to

independantly change the font sizes and style of the GUI functions, but this is work

in progress.

563

6.20. S CHAPTER 6. COMMAND REFERENCE

EXAMPLE:

SETFONT "BIG"
TEXT 100,100,"Hi, this is a big font"
SETFONT "5x7"
TEXT 100,150,"The small variant"
SETFONT "-*-lucidatypewriter-medium-r-*-*-10-*-*-*-m-*-*-*"
TEXT 100,200,"This may work on a UNIX system."
SETFONT "C:\Arial.ttf"
TEXT 100,200,"This may work on some other platform."

SEE ALSO: TEXT

564

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SETMOUSE

Syntax: SETMOUSE x,y[,k[,m]]

DESCRIPTION:

The SETMOUSE command permits the positioning of the mouse cursor under

program control. The optional parameter k can simulate the mouse button being

pressed or released. The optional parameter m specifies if the coordinates are rel-

ative to the windows origin (m=0, default) or relative to the mouses current position

(m=1).

EXAMPLE:

ROOTWINDOW
i=0
REPEAT
SETMOUSE 2,i,,1 ! Move relative by 2 in x and by i in y
SHOWPAGE
PAUSE 0.04
INC i

UNTIL MOUSEY>800

SEE ALSO: MOUSE

565

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SGET

Syntax: SGET screen$

DESCRIPTION:

SGET stores the content of the graphics window or screen in screen$. The data

format is BMP (in case you want to write this into a file).

EXAMPLE:

CLEARW ! clear the screen, otherwise sometimes there is garbage left
FOR i=1 TO 64
FOR j=1 TO 40
COLOR COLOR_RGB(i/64,j/40,SQRT(1-(i/64)^2-(j/40)^2))
CIRCLE i*10,j*10,3 ! draw something

NEXT j
NEXT i
CIRCLE 100,100,30
SHOWPAGE

SGET screen$
BSAVE "screen.bmp",VARPTR(screen$),LEN(screen$)

SEE ALSO: SPUT, SAVEWINDOW, GET, PUT

566

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SGN()

Syntax: a=SGN(b)

DESCRIPTION:

SGN returns the sign of a number b. It may be -1 if b is negative 0 if b equals 0

1 if b is positive.

SEE ALSO: ABS()

567

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SHELL

Syntax: SHELL file$[,argument$,...]

DESCRIPTION:

This command executes an executable program which name and path is given

in file$. The text console/terminal will be connected to the running program. Op-

tional string arguments can be specified. The difference to SYSTEM (which exe-

cutes a shell command) is, that with SHELL you execute the file and not a com-

mand.

EXAMPLE:

SHELL "/usr/bin/sh" ! starts the sh shell interactively

SEE ALSO: SYSTEM

568

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SHL()

Syntax: i%=SHL(j%,n%)

DESCRIPTION:

Returns the bit pattern in j% shifted left by n% bits.

EXAMPLE:

PRINT SHL(8,2) Result: 32

SEE ALSO: SHR()

569

6.20. S CHAPTER 6. COMMAND REFERENCE

Function: SHM_ATTACH()

Syntax: adr=SHM_ATTACH(id)

DESCRIPTION:

SHM_ATTACH() attaches the shared memory segment identified by id (see

SHM_MALLOC()) to the programs address space. The address is returned.

You can also attach shared memory segments, which are originally created by

another process, but you must know the id, and the process must have read and

write permission for the segment.

SEE ALSO: SHM_MALLOC(), SHM_DETACH, SHM_FREE

570

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SHM_DETACH

Syntax: SHM_DETACH adr

DESCRIPTION:

SHM_DETACH detaches the shared memory segment located at the address

specified by adr from the address space of the program. The to-be-detached seg-

ment must be currently attached with adr equal to the value returned by the attach-

ing SHM_ATTACH() call.

SEE ALSO: SHM_MALLOC(), SHM_ATTACH()

571

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SHM_FREE

Syntax: SHM_FREE id

DESCRIPTION:

Mark the shared memory segment identified by id to be destroyed. The seg-

ment will only actually be destroyed after the last process detaches it. You can

only free a shared memory segment, if you are the owner, means, you must have

created it with SHM_MALLOC().

SEE ALSO: SHM_MALLOC()

572

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SHM_MALLOC()

Syntax: id=SHM_MALLOC(size,key)

DESCRIPTION:

SHM_MALLOC() returns the identifier of the shared memory segment associ-

ated with key. A new shared memory segment, with size equal to the value of size

rounded up to a multiple of the operating system internal page size, is created if

no shared memory segment corresponding to key exists.

Open the shared memory segment - create if necessary.

Return value is the id of the shared memory segment. The id can be used by

different processes to attach and access the segment (read and write). In case of

an error, -1 is returned.

SEE ALSO: SHM_FREE, SHM_ATTACH()

573

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SHOWK

Syntax: SHOWK

DESCRIPTION:

Show the vitual keyboard (make it visible) and activate it for input.

Comment:

This command works currently only on Android. An other platforms it has no

effect.

SEE ALSO: HIDEK

574

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SHOWM

Syntax: SHOWM

DESCRIPTION:

Show the mouse cursor (make it visible).

SEE ALSO: HIDEM

575

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SHOWPAGE

Syntax: SHOWPAGE

DESCRIPTION:

SHOWPAGE refreshes the graphic output. Usually the drawing to the graphic

output window or screen is not visible until SHOWPAGE is performed. (Only on

TomTom devices this command has no effect, because all graphics drawn is im-

mediately visible).

SEE ALSO: VSYNC

576

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SHR()

Syntax: i%=SHR(j%,n%)

DESCRIPTION:

Returns the bit pattern in j% shifted right by n% bits.

EXAMPLE:

PRINT SHR(8,2) Result: 2

SEE ALSO: SHL(), ROR(), ROL()

577

6.20. S CHAPTER 6. COMMAND REFERENCE

Function: SIGN$()

Syntax: s$=SIGN$(message$,key$[,type])

DESCRIPTION:

SIGN$() returns a digital signature based on message$ and a (private) key

key$. The type parameter determines, which algorithm is to be used. Default:

type=0. The returned signature can be used to verify (the same) message and its

authenticity with VRFY() and the corresponding (public) key.

Comment:

This function is only available if libgcrypt was compiled in.

SEE ALSO: ENCRYPT$(), HASH$(), VRFY()

578

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SIN()

Syntax: <num-result>=SIN(<num-expression>)

DESCRIPTION:

Returns the sinus of the expression in radians.

EXAMPLE:

PRINT SIN(PI/2) Result: 1

SEE ALSO: COS(), TAN(), ACOS()

579

6.20. S CHAPTER 6. COMMAND REFERENCE

Function: SINH()

Syntax: <num-result>=SINH(<num-expression>)

DESCRIPTION:

Returns the sinus hyperbolicus of the expression in radians.

SEE ALSO: SIN(), ASINH()

580

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SIZE()

Syntax: l%=SIZE(file$)

DESCRIPTION:

Returns the size of a file given by its filename (including path).

SEE ALSO: LOF()

581

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SIZEW

Syntax: SIZEW nr,w,h

DESCRIPTION:

Resizes the graphic window #nr with width w and height h.

SEE ALSO: OPENW, MOVEW

582

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SOLVE()

Syntax: x()=SOLVE(m(),d())

DESCRIPTION:

Solves a set of linear equations of the form M()*x()=d(). M() has to be a 2

dimensional array (a matrix) not necessarily a square matrix. d() must be a 1

dimensional array (a vector) with exactly as many elements as lines of M(). x() will

be a 1 dimensional array (a vector) with exactly as many elements as rows of M().

Internally a singular value decomposition is used to solve the equation. If the linear

equation system does not have an exact solution, the returned vector is the one

which minimizes (least square) |M*x-d|.

EXAMPLE:

r=3
c=5
DIM a(r,c),b(r)
ARRAYFILL a(),0
a(0,0)=1
a(0,2)=1
a(1,1)=10
a(2,2)=100
b(0)=4
b(1)=2
b(2)=300
PRINT "solve:"
FOR i=0 TO r-1

PRINT i;": (";
FOR j=0 TO c-1
PRINT a(i,j);
IF j<c-1
PRINT ", ";

ENDIF
NEXT j
PRINT ")(x)=(";b(i);")"

583

6.20. S CHAPTER 6. COMMAND REFERENCE

NEXT i
PRINT
er()=SOLVE(a(),b())
PRINT "solution:"
FOR i=0 TO c-1
PRINT "(x";i;")=(";er(i);")"

NEXT i

Comment:

This function is only available, if X11-Basic was compiled and linked together

with the LAPACK library. (currently only on linux).

SEE ALSO: INV(), DET()

584

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SORT

Syntax: SORT array()[,n%[,idx%()]]
SORT array%()[,n%[,idx%()]]
SORT array$()[,n%[,idx%()]]

DESCRIPTION:

SORT sorts the one-dimensional array array(), array%() or array$(). Numeric

arrays and string arrays can be sorted. If n% is given, only the first n% values are

sorted. If idx%() is given, this (numerical) array will also be sorted corresponding

to the first one. This is useful for creating an index table. SORT uses the canonical

ASCII coding for sorting strings. If you want a string array sorted by a different al-

phabet or being sorted case insensitive, you can implement such sorting functions

with the index tables.

EXAMPLE:

DIM test$(100)
CLR anzdata
DO
READ a$
EXIT IF a$="*"
test$(anzdata)=a$
INC anzdata

LOOP
SORT test$(),anzdata ! normal sort according to ASCII
@asort(test$(),anzdata) ! special alphabet sort
@usort(test$(),anzdata) ! sort ignoring the case of characters
PRINT "Result of SORT:"
FOR x=0 TO anzdata-1
PRINT test$(x)

NEXT x
END

’

585

6.20. S CHAPTER 6. COMMAND REFERENCE

’ Sort case insensitive
’
PROCEDURE usort(VAR s$(),anz%)
LOCAL k%,t$(),i%(),t2$()
t$()=s$()
DIM i%(anz%) ! create index table
FOR k%=0 TO anz%-1
i%(k%)=k%
t$(k%)=UPPER$(t$(k%))

NEXT k%
SORT t$(),anz%,i%() ! Sort with index table
DIM t2$(DIM?(s$()))
FOR k%=0 TO anz%-1
t2$(k%)=s$(i%(k%))

NEXT k%
s$()=t2$()

RETURN
’
’ Sort with a custom alphabet
’
PROCEDURE asort(VAR s$(),anz%)
LOCAL k%,alphabet$,j%,t$(),i%(),t2$()
t$()=s$()
alphabet$="0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz"
DIM i%(anz%) ! create index table
FOR k%=0 TO anz%-1
i%(k%)=k%
FOR j%=0 TO LEN(t$(k%))-1
POKE VARPTR(t$(k%))+j%,INSTR(alphabet$,MID$(t$(k%),j%+1))

NEXT j%
NEXT k%
SORT t$(),anz%,i%() ! Sort with index table
DIM t2$(DIM?(s$()))
FOR k%=0 TO anz%-1
t2$(k%)=s$(i%(k%))

NEXT k%
s$()=t2$()

RETURN

SEE ALSO: DIM

586

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SOUND

Syntax: SOUND <channel>,<frequency>[,volume[,duration]]

DESCRIPTION:

SOUND sets a tone for the sound generator for channel c%. There are 16

sound channels which are mixed together, so c may be between 0 and 15. If c is

omitted or -1, a free channel (which is quiet at that time) will be used.

The tone has frequency [Hz], volume [0-1] and a duration [s]. If frequency=0

(or volume=0) the channel will be switched off. If duration is omitted or -1 a perma-

nent sound will be played (infinite duration, until it is cleared by the next SOUND

command to that channel).

Each of the 16 channels also support sound samples, which can be set via

PLAYSOUND. Volume can be 0 (off) to 1 (maximum). The duration is counted in

seconds. The parameters of the sound synthesizer of this channel can be set with

WAVE (envelope and wave form). Also noise can be set for a channel.

Comment:

On systems without ALSA/PCM sound the internal speaker is used. The in-

ternal speaker has only one channel (and produces sort of a square wave). The

internal speaker is accessed via a console device and needs privileges. Except for

on ANDROID devices, the sound currently does not work under UNIX/LINUX.

EXAMPLE:

WAVE 1,1,0.05,0.1,0.5,0.1 ! set the instrument parameters
DO
MOUSEEVENT ! wait for mouseclick

587

6.20. S CHAPTER 6. COMMAND REFERENCE

SOUND 1,2*MOUSEX+50,1,0.3 ! play a nice sound
LOOP

’ Also this is possible:
SOUND 1,500 ! SOUND ON
PAUSE 0.1
SOUND 1,0 ! SOUND OFF

SEE ALSO: WAVE, PAUSE, PLAYSOUND

588

CHAPTER 6. COMMAND REFERENCE 6.20. S

Variable: SP

Syntax: i%=SP

DESCRIPTION:

The variable SP represents the internal X11-Basic stack pointer. Do not name

any other variable SP (or PC) since no value can be assigned to it.

SEE ALSO: PC

589

6.20. S CHAPTER 6. COMMAND REFERENCE

Function: SPACE$()

Syntax: t$=SPACE$(n)

DESCRIPTION:

Returns a string containing n spaces.

SEE ALSO: STRING$()

590

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SPAWN

Syntax: SPAWN procedure

DESCRIPTION:

Spawns a new thread using the given procedure as an entry point. This entry

point can be considered the "main" function of that thread of execution. The new

thread will run in parallel to the main thread and can access the same memory

(unlike a process which was forked with fork()).

This command is not fully implemented and at the moment messes up the pro-

gram execution stack of the interpreter since all internal control structures are ac-

cessed by two threads. Anyway, in a natively compiled program this can work as

expected.

SEE ALSO: FORK()

591

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SPEAK

Syntax: SPEAK t$[,pitch,rate,locale$]

DESCRIPTION:

Reads text t$ loud. (It uses Text-to-speech synthesis if it is available). You can

adjust a factor for pitch (<1 male, >1 female) and rate (<1 slow, >1 fast).

The locale can be:

"de" for German pronunciation,
"en" for English pronunciation,
"us" for English pronunciation,
"fr" for French pronunciation,
"es" for Spanish pronunciation,
"it" for Italian pronunciation.

Comment:

This command is implemented in the Android version of X11-Basic only. Not all

locales might be installed. If a locale is missing, you will be asked to install it.

EXAMPLE:

SPEAK "" ! The first SPEAK command initializes the text-to-speech engine
SPEAK "Are you hungry?"
SPEAK "Ich glaube nicht.",1,1,"de"

592

CHAPTER 6. COMMAND REFERENCE 6.20. S

SEE ALSO: PLAYSOUND, WAVE

593

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SPLIT

Syntax: SPLIT t$,d$,mode%,a$[,b$]

DESCRIPTION:

Splits up string t$ into two parts a$ and b$ concerning a delimiter string d$. So

that t$=a$+d$+b$.

mode can be: 0 – default 1 – do not search in parts of t$ which are in brackets.

Quoted parts of the string are not split up.

EXAMPLE:

SPLIT "Hello, this is a string."," ",0,a$,b$

SEE ALSO: WORT_SEP, WORD$()

594

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SPUT

Syntax: SPUT screen$

DESCRIPTION:

Map a screen bitmap, which was stored in screen$ (and saved with SGET) back

to the screen.

EXAMPLE:

CLEARW ! clear the screen, otherwise sometimes there is garbage left
FOR i=1 TO 64
FOR j=1 TO 40
COLOR COLOR_RGB(i/64,j/40,SQRT(1-(i/64)^2-(j/40)^2))
CIRCLE i*10,j*10,3 ! draw something

NEXT j
NEXT i
CIRCLE 100,100,30
SHOWPAGE

SGET b$! get the whole screen bitmap and save it in b$
CLEARW
SHOWPAGE ! screen is now blank
PRINT "now reput the screen"
PAUSE 1
SPUT b$! put back the saved screen content
SHOWPAGE

SEE ALSO: SGET, PUT_BITMAP

595

6.20. S CHAPTER 6. COMMAND REFERENCE

Function: SQR(), SQRT()

Syntax: <num-result> = SQR(<num-expression>)
<num-result> = SQRT(<num-expression>)

DESCRIPTION:

SQR() and SQRT() return the square root of its argument. The function can also

be used on complex numbers, then returning a complex result. You can always

force the function return the complex sqare root (given a real argument) by using:

SQRT(a+0i).

EXAMPLES:

PRINT SQR(25) ! Result: 5
PRINT SQRT(-1+0i) ! Result: (0+1i)

PRINT "Calculate square root of a number."
INPUT "Number=",z
r124=1
105:
r123=r124
r124=(r123^2+z)/(2*r123)
IF ABS(r124-r123)-0.00001>0
PRINT r124
GOTO 105

ENDIF
PRINT "Result of this algorithm:"’r124
PRINT "Compare with: sqrt(";z;")=";SQRT(z)
PRINT "Deviation:"’ABS(SQRT(z)-r124)

596

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SRAND()

Syntax: VOID SRAND(b)

DESCRIPTION:

The SRAND() function sets its argument as the seed for a new sequence of

pseudo-random integers to be returned by RAND(), RANDOM() or RND(). These

sequences are repeatable by calling SRAND() with the same seed value.

SEE ALSO: RANDOMIZE, RANDOM(), RND(), RAND()

597

6.20. S CHAPTER 6. COMMAND REFERENCE

Variable: STIMER

Syntax: <int-result>=STIMER

DESCRIPTION:

STIMER returns the integer part of TIMER. So the resolution is 1 second and

the value fits in 32 bit integers. (And it is a bit faster than TIMER).

SEE ALSO: TIMER, CTIMER

598

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: STOP

Syntax: STOP

DESCRIPTION:

STOP halts program execution and sets the interpreter to interactive mode. The

execution can be continued with the CONT command.

SEE ALSO: CONT, END, QUIT

599

6.20. S CHAPTER 6. COMMAND REFERENCE

Function: STR$()

Syntax: t$=STR$(a[,b,c[,d]])

DESCRIPTION:

STR$() converts a number into a string of length b with c significant digits. If b

or c are omitted, the string will contain as much digits as the number requires. if

d=1, leading zeros are printed.

EXAMPLES:

PRINT STR$(PI) ! Result: 3.14159265359
PRINT STR$(PI,2,2) ! Result: 3.1
PRINT STR$(PI,5,2,1) ! Result: 003.1
PRINT STR$(PI+3i,5,2,1) ! Result: (003.1+00003i)

SEE ALSO: VAL(), PRINT USING, USING$()

600

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: STRING$()

Syntax: a$=STRING$(i%,b$)

DESCRIPTION:

The STRING$() function returns a string consisting of i% copies of b$.

SEE ALSO: SPACE$()

601

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SUB

Syntax: SUB a,b
SUB a%,b%
SUB a#,b#
SUB a&,b&

DESCRIPTION:

Decrease the value of the variable a by the result of b.

EXAMPLE:

a=0.5
SUB a,5
Result: -4.5

SEE ALSO: ADD, MUL, DIV

*

Function: SUB()

602

CHAPTER 6. COMMAND REFERENCE 6.20. S

Syntax: c=SUB(a,b)
c%=SUB(a%,b%)
c#=SUB(a#,b#)
c&=SUB(a&,b&)

DESCRIPTION:

Returns the result of a minus b.

SEE ALSO: SUB, ADD()

603

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SUBSCRIBE

Syntax: SUBSCRIBE topic$,value$[,callback[,qos]]

DESCRIPTION:

Subscribes to (or unsubscribes from) a topic on the (mqtt) broker. You can

optionally specify a quality of service value. When a message is received, its

content will be stored in the global variable value$ and the procedure callback

is excecuted. If qos=-1, the topic will be unsubscribed. The callback function is

optional.

The Quality of service can be:

-1 -- unsubscribe
0 -- receive at most once
1 -- receive ar least once
2 -- receive exactly once

The callback procedure takes exactly two arguments. A string with the topic

name and another string with the message content. You can use mqtt-wildcards

in the topic name on subscriptions, so the callback procedure gets called on mes-

sages from any of these topics.

EXAMPLE:

BROKER "tcp://localhost:1883"
SUBSCRIBE "CMD",cmd_var$,cmd_callback,2
SUBSCRIBE "TEMPERATURE",temp_var$,engine
SUBSCRIBE "HUMIDITY",hum_var$,engine
SUBSCRIBE "SOMETHING",something_var$
DO
PUBLISH "ACTIVITY",STR$(i MOD 4)
INC i

604

CHAPTER 6. COMMAND REFERENCE 6.20. S

PAUSE 1
EXIT IF cmd_var$="exit"

LOOP
SUBSCRIBE "CMD",,,-1 ! Unsubscribe from CMD
QUIT

’ This realizes a "rule". The input topics will trigger this.
PROCEDURE engine(topic$,message$)
LOCAL temp,hum,dev
PRINT "engine triggered on ";topic$
temp=VAL(temp_var$)
hum=VAL(hum_var$)
dev=temp*hum ! please implement the correct formula
PUBLISH "DEWPOINT",STR$(dev)

RETURN
PROCEDURE cmd_callback(topic$,message$)
PRINT "cmd_callback trigered: cmd_var=";cmd_var$

RETURN

SEE ALSO: BROKER, PUBLISH

605

6.20. S CHAPTER 6. COMMAND REFERENCE

Function: SUCC()

Syntax: a=SUCC(b)

DESCRIPTION:

Determines the next higher integer number.

SEE ALSO: PRED()

606

CHAPTER 6. COMMAND REFERENCE 6.20. S

Command: SWAP

Syntax: SWAP a,b
SWAP a%,b%
SWAP a$,b$
SWAP a(),b()

DESCRIPTION:

Exchanges the values of the variables a and b. A and b can be of any type, but

the types of a and b must be equal. SWAP a(0),b would also be possible.

EXAMPLE:

a=4
b=5
SWAP a,b
print a ! Result: 5

SEE ALSO: LET, Operator: =

*

Function: SWAP()

607

6.20. S CHAPTER 6. COMMAND REFERENCE

Syntax: a%=SWAP(b%)

DESCRIPTION:

Swaps High and Low words of b and returns the result. b is always treated as

a 32 bit unsigned integer.

EXAMPLE:

PRINT HEX$(SWAP(5)) ! Result: 0000000050000

SEE ALSO: BYTE(), CARD(), WORD()

608

CHAPTER 6. COMMAND REFERENCE 6.20. S

Function: SYM_ADR()

Syntax: adr=SYM_ADR(#n,sym_name$)

DESCRIPTION:

SYM_ADR() resolves the address of a symbol name of a given shared object

library which has been linked before.

EXAMPLE:

t$="/usr/lib/libreadline.so" ! If the readline shared object file
IF EXIST(t$) ! exist,
LINK #1,t$! link it, resolve the symbol "readline"
DUMP "#" ! and execute that subroutine with
promt$=">>>" ! one string parameter.
adr=EXEC(SYM_ADR(#1,"readline"),L:VARPTR(promt$))
r=adr
WHILE PEEK(r)>0 ! Print the result
PRINT CHR$(PEEK(r));
INC r

wend
PRINT
UNLINK #1 ! Unlink the dynamic lib
FREE adr

ENDIF

SEE ALSO: LINK, UNLINK

609

6.20. S CHAPTER 6. COMMAND REFERENCE

Command: SYSTEM

Syntax: SYSTEM <string-expression>

DESCRIPTION:

Passes a command to the shell. Executes the shell command. SYSTEM pro-

vides a way to use alle commands like rm, rmdir, mkdir etc. which are not im-

plemented in X11-Basic, but which are available from a command shell. (This is

usually sh or busybox on UNIX/LINUX/ANDROID and TomTom systems and DOS

on MS WINDOWS).

EXAMPLE:

SYSTEM "mkdir folder"

SEE ALSO: SYSTEM$()

*

Function: SYSTEM$()

610

CHAPTER 6. COMMAND REFERENCE 6.20. S

Syntax: ret$=SYSTEM$(command$)

DESCRIPTION:

Passes a command to the shell. Executes shell command. The function returns

a string containing the stdout of the command executed.

EXAMPLE:

d$=SYSTEM$("ls")
PRINT d$

SEE ALSO: SYSTEM

611

6.21. T CHAPTER 6. COMMAND REFERENCE

6.21 T

612

CHAPTER 6. COMMAND REFERENCE 6.21. T

Function: TALLY()

Syntax: a%=TALLY(t$,s$[,start%])

DESCRIPTION:

TALLY() returns the number of occurrences of s$ in t$, starting at the given

position start% in t$. If s$ is not present in t$, zero is returned.

EXAMPLE:

PRINT TALLY("Hello","l") ! Result: 2

SEE ALSO: INSTR()

613

6.21. T CHAPTER 6. COMMAND REFERENCE

Function: TAN()

Syntax: b=TAN(a)

DESCRIPTION:

Returns the tangens of the expression in radians.

SEE ALSO: SIN(), ATAN(), TANH()

614

CHAPTER 6. COMMAND REFERENCE 6.21. T

Function: TANH()

Syntax: b=TANH(a)

DESCRIPTION:

Returns the tangens hyperbolicus of the expression in radians.

SEE ALSO: SIN(), ATANH(), TAN()

615

6.21. T CHAPTER 6. COMMAND REFERENCE

Variable: TERMINALNAME$

Syntax: a$=TERMINALNAME$

DESCRIPTION:

Returns the device name of the terminal connected to the stdout standard out-

put (if a terminal device is connected).

EXAMPLE:

PRINT TERMINALNAME$
Result: /dev/pts/0

*

Function: TERMINALNAME$()

Syntax: t$=TERMINALNAME$(#n)

DESCRIPTION:

Returns the device name of the terminal connected to file #n if it is a terminal

device.

616

CHAPTER 6. COMMAND REFERENCE 6.21. T

Command: TEXT

Syntax: TEXT x,y,t$

DESCRIPTION:

Draws text t$ in graphics window at position x,y.

EXAMPLE:

’ Show the complete ASCII Font
SETFONT "*writer*18*"
COLOR GET_COLOR(65535,10000,10000)
FOR x=0 to 15
FOR y=0 to 15
TEXT 320+16*y,20+24*x,CHR$(y+16*x)

NEXT y
NEXT x
SHOWPAGE

SEE ALSO: SETFONT, DEFTEXT

617

6.21. T CHAPTER 6. COMMAND REFERENCE

Variable: TIME$

Syntax: a$=TIME$

DESCRIPTION:

Returns the system time as a string. Format: hh:mm:ss and is updated every

second.

EXAMPLE:

PRINT TIME$,DATE$! 14:49:44 11.03.2014

SEE ALSO: DATE$, TIMER, UNIXTIME$()

618

CHAPTER 6. COMMAND REFERENCE 6.21. T

Variable: TIMER

Syntax: TIMER

DESCRIPTION:

Returns actual time in number of seconds since 01.01.1970 00:00 GMT. The

value has milliseconds resolution. TIMER is often used to measure times.

EXAMPLE:

n%=1000000
DIM t$(n%),u%(n%)
t=TIMER
PRINT "filling the string array with ";n%;" strings ..."
FOR i%=0 TO n%-1
t$(i%)=STR$(RANDOM(n%))
u%(i%)=i%

NEXT i%
PRINT "this took ";TIMER-t;" seconds."
END

SEE ALSO: STIMER, CTIMER, TIME$, DATE$, UNIXTIME$(), UNIXDATE$()

619

6.21. T CHAPTER 6. COMMAND REFERENCE

Command: TITLEW

Syntax: TITLEW n,title$

DESCRIPTION:

Gives the window #n the new title title$.

SEE ALSO: OPENW, INFOW

620

CHAPTER 6. COMMAND REFERENCE 6.21. T

Command: TOPW

Syntax: TOPW [n]

DESCRIPTION:

Activates the windows number n and moves it to the front of the screen.

SEE ALSO: BOTTOMW, MOVEW

621

6.21. T CHAPTER 6. COMMAND REFERENCE

Command: TOUCH

Syntax: TOUCH #n

DESCRIPTION:

Updates the date and time stamps of a file, giving it the current system time and

date.

EXAMPLE:

OPEN "U",#1,"test.txt"
TOUCH #1
CLOSE #1

SEE ALSO: OPEN, CLOSE

622

CHAPTER 6. COMMAND REFERENCE 6.21. T

Variable: TRACE$

Syntax: a$=TRACE$

DESCRIPTION:

The variable TRACE$ contains the command which is next to be processed.

EXAMPLE:

PRINT TRACE$! Result: END
END

SEE ALSO: TRON, TROFF, PC

623

6.21. T CHAPTER 6. COMMAND REFERENCE

Function: TRIM$()

Syntax: b$=TRIM$(a$)

DESCRIPTION:

TRIM$(a$) returns a modified string taken a$

1. replace Tabs by space,

2. replace double spaces by single ones ,

3. remove leading and trailing spaces.

4. Parts of the string which are in quotes ("") will not be changed.

SEE ALSO: XTRIM$(), REPLACE$()

624

CHAPTER 6. COMMAND REFERENCE 6.21. T

Command: TROFF

Syntax: TROFF

DESCRIPTION:

TROFF disables tracing output. This command is meant to be used during

program development.

SEE ALSO: TRON, ECHO

625

6.21. T CHAPTER 6. COMMAND REFERENCE

Command: TRON

Syntax: TRON

DESCRIPTION:

TRON enables tracing output: each program line is displayed on the console

before it is executed. This command is meant to be used during program develop-

ment.

SEE ALSO: TROFF, ECHO

626

CHAPTER 6. COMMAND REFERENCE 6.21. T

Variable: TRUE

Syntax: TRUE

DESCRIPTION:

Constant -1. This is simply another way of expressing the value of a condition

when it is true and is equal to -1 (all bits not zero).

SEE ALSO: FALSE

627

6.21. T CHAPTER 6. COMMAND REFERENCE

Function: TRUNC()

Syntax: a=TRUNC(x)

DESCRIPTION:

TRUNC() rounds x to the nearest integer not larger in absolute value. TRUNC

complements FRAC:

TRUNC(x)=x-FRAC(x)

SEE ALSO: FRAC(), FLOOR(), FIX()

628

CHAPTER 6. COMMAND REFERENCE 6.21. T

Function: TYP?()

Syntax: a%=TYP?(<var>)

DESCRIPTION:

Returns the type of a variable.

0 -- invalid
1 -- 32 bit integer
2 -- 64 bit floating point
3 -- big integer
4 -- ARBFLOATTYP
5 -- complex
6 -- ARBCOMPLEXTYP
7 -- String

+8 -- Array of typ 0-7
+32 -- it is a constant of typ 0-7

Comment:

This function is nearly useless. It only shows internals of X11-Basic.

EXAMPLES:

PRINT typ?(a) -> 2
PRINT typ?(a$) -> 7
PRINT typ?(a())-> 10

629

6.22. U CHAPTER 6. COMMAND REFERENCE

6.22 U

630

CHAPTER 6. COMMAND REFERENCE 6.22. U

Function: UBOUND()

Syntax: n%=UBOUND(array()[,i%])

DESCRIPTION:

The UBOUND function returns the largest subscript for the indicated dimension

of an array plus one. This is the size of the i’th dimension. i% specifies which

dimension’s upper bound to return. 0 = first dimension, 1 = second dimension, and

so on. Default is 0.

SEE ALSO: DIM, DIM?(), ARRPTR()

631

6.22. U CHAPTER 6. COMMAND REFERENCE

Function: UCASE$()

Syntax: a$=UCASE$(<string-expression>)

DESCRIPTION:

Transforms all lower case letters of a string to upper case. Any non letter char-

acters are left unchanged.

SEE ALSO: UPPER$(), LOWER$()

632

CHAPTER 6. COMMAND REFERENCE 6.22. U

Variable: UNCOMPRESS$()

Syntax: t$=UNCOMPRESS$(c$)

DESCRIPTION:

Un-compresses the content of a string which has been compressed with the

COMPRESS$() function before.

SEE ALSO: COMPRESS$()

633

6.22. U CHAPTER 6. COMMAND REFERENCE

Variable: UNIX?

Syntax: a%=UNIX?

DESCRIPTION:

Returns TRUE (-1) If the program is running under a UNIX environment.

SEE ALSO: WIN32?, ANDROID?

634

CHAPTER 6. COMMAND REFERENCE 6.22. U

Function: UNIXTIME$(), UNIXDATE$()

Syntax: t$=UNIXTIME$(i)
d$=UNIXDATE$(i)

DESCRIPTION:

These functions return the date and time as a string which has the same format

as DATE$ and TIME$ given by a TIMER value. Time and Date returned are local

times adjusted to summer and winter time and based on CET.

EXAMPLE:

PRINT UNIXDATE$(1045390004.431), UNIXTIME$(1045390004.431)
Result: 16.02.2003 11:06:44

SEE ALSO: DATE$, TIME$, TIMER

635

6.22. U CHAPTER 6. COMMAND REFERENCE

Command: UNLINK

Syntax: UNLINK #n

DESCRIPTION:

Un-links a shared object which has been linked before and occupies file channel

#n.

SEE ALSO: LINK, CLOSE

636

CHAPTER 6. COMMAND REFERENCE 6.22. U

Command: UNMAP

Syntax: UNMAP adr%,len%

DESCRIPTION:

Un-map files or devices out of memory.

The UNMAP command deletes the mappings for the specified address range.

Further PEEK() and POKEs to addresses within the old range will produce an error

(crash). The region is also automatically unmapped when X11-Basic is terminated.

On the other hand, closing the file does not un-map the region.

SEE ALSO: MAP

637

6.22. U CHAPTER 6. COMMAND REFERENCE

Command: UNTIL

Syntax: UNTIL <expression>

DESCRIPTION:

UNTIL terminates a REPEAT...UNTIL loop.

SEE ALSO: REPEAT, DO

EXAMPLE:

REPEAT
N=N+1

UNTIL (N=10)

638

CHAPTER 6. COMMAND REFERENCE 6.22. U

Function: UPPER$()

Syntax: u$=UPPER$(t$)

DESCRIPTION:

Transforms all lower case letters of a string to upper case. Any non letter char-

acters are left unchanged.

SEE ALSO: UCASE$(), LOWER$()

639

6.22. U CHAPTER 6. COMMAND REFERENCE

Command: USEWINDOW

Syntax: USEWINDOW #n

DESCRIPTION:

Use the window n for all following graphic commands.

SEE ALSO: OPENW, ROOTWINDOW

640

CHAPTER 6. COMMAND REFERENCE 6.22. U

Function: USING$()

Syntax: t$=USING$(a,format$)

DESCRIPTION:

The function USING$() returns a formatted string made out of a numeric value

a. How the number is formatted can be set by a format$ consisting of one or more

of the following characters.

Denotes a numerical digit (leading spaces),
0 Denotes a numerical digit (leading zeros),
* Denotes a numerical digit (leading asterisks),
$ Denotes a numerical digit (single leading Dollar),
? Denotes a numerical digit (single leading EURO).

^^^^ After # digits prints numerical value in exponential
e+xx format.
Use ^^^^^ for E+xxx values. The exponent is adjusted
with significant digits left-justified.

. Period sets a number’s decimal point position. Digits
following determine rounded value accuracy.

+ Plus sign denotes the position of the number’s sign. +
or - will be displayed.

- Minus sign (dash) placed before or after the number,
displays only a negative value’s sign.

_ Underscore preceding a format symbol prints those symbols
as literal string characters.

Note: Any string character not listed above will be printed as a literal text character

(useful to add commas or units). If the number cannot be expressed with the given

format, a series of "*" will be displayed. The returned string will always have exactly

the same length than format$. USING$() rounds to the nearest printed digit.

641

6.22. U CHAPTER 6. COMMAND REFERENCE

EXAMPLE:

PRINT USING$(1.23456,"+##.###^^^^") ! Result: + 1.235e+00

SEE ALSO: PRINT USING, STR$()

642

CHAPTER 6. COMMAND REFERENCE 6.23. V

6.23 V

643

6.23. V CHAPTER 6. COMMAND REFERENCE

Function: VAL()

Syntax: a=VAL(t$)

DESCRIPTION:

VAL() converts a string representing a floating point number into a numeric

value. If the string does not represent a valid number 0 is returned.

EXAMPLE:

a=VAL("3.1415926")

SEE ALSO: VAL?(), STR$()

*

Function: VAL?()

644

CHAPTER 6. COMMAND REFERENCE 6.23. V

Syntax: a=VAL?(t$)

DESCRIPTION:

Returns the number of characters from a string which can be converted into a

number.

EXAMPLE:

PRINT VAL?("12345.67e12Hallo") ! Result: 11

SEE ALSO: VAL()

645

6.23. V CHAPTER 6. COMMAND REFERENCE

Operator: VAR

Syntax: PROCEDURE name(...,VAR a,...)
FUNCTION name(...,VAR z,...)

DESCRIPTION:

This operator can declare a variable in a parameter list of a procedure or a

function to be passed by reference instead of by value. This is useful to pass

(more than one) return values.

EXAMPLE:

@sum(13,12,a)
@sum(7,9,b)
PRINT a,b
’
PROCEDURE sum(x,y,VAR z)
z=x+y

RETURN

SEE ALSO: PROCEDURE, FUNCTION

646

CHAPTER 6. COMMAND REFERENCE 6.23. V

Function: VARIAT()

Syntax: a%=VARIAT(n%,k%)

DESCRIPTION:

Returns the number of permutations of n elements to the k-th order without

repetition.

EXAMPLE:

PRINT VARIAT(6,2) ! Result: 30

SEE ALSO: COMBIN(), FACT()

647

6.23. V CHAPTER 6. COMMAND REFERENCE

Function: VARLEN()

Syntax: a=VARLEN(<variable>)

DESCRIPTION:

Determines the length of the content of a variable in memory. For float variables

usually 8 is returned, meaning, 8 bytes following the adress returned by VARPTR()

belong to the variable. For string variables the length of the string content is re-

turned. This is the same result as of LEN(var$) but the calculation is much faster

for very long strings.

SEE ALSO: VARPTR(), PEEK(), POKE, ABSOLUTE

648

CHAPTER 6. COMMAND REFERENCE 6.23. V

Function: VARPTR()

Syntax: adr%=VARPTR(<variable>)

DESCRIPTION:

Determines the address of the content of a variable in memory and returns a

pointer. Usually this is used together with PEEK() and POKE to modify the content

of the variable. VARPTR() can also be used to determine the address of an array

index.

EXAMPLE:

PRINT VARPTR(t$),VARPTR(a(2,4))
POKE VARPTR(t$),ASC("A")

SEE ALSO: VARLEN(), ARRPTR(), PEEK(), POKE, ABSOLUTE

649

6.23. V CHAPTER 6. COMMAND REFERENCE

Command: VERSION

Syntax: VERSION

DESCRIPTION:

Shows X11-Basic version number and date.

EXAMPLE:

VERSION
Result: X11-BASIC Version: 1.27 Mon Jun 04 12:00:38 CET 2019

650

CHAPTER 6. COMMAND REFERENCE 6.23. V

Command: VOID ABBREV. ~

Syntax: VOID <expression>

DESCRIPTION:

This command performs a calculation and forgets the result. Sounds silly but

there are occasions when this command is required, e.g. when you want to execute

a function but you are not really interested in the return value; e.g. waiting for a

keystroke (INP(-2)).

EXAMPLE:

~INP(-2)
VOID FORM_ALERT(1,"[1][Hello][OK]")

SEE ALSO: GOSUB

651

6.23. V CHAPTER 6. COMMAND REFERENCE

Function: VRFY()

Syntax: flag%=VRFY(message$,signature$,key$[,type])

DESCRIPTION:

Returns TRUE (-1) if the digital signature in signature$ matches the message

in message$ and the (public) key in key$. Otherwise FALSE (0) is returned. signa-

ture$ must be a valid signature produced by SIGN$().

Comment:

This function is only available in X11-Basic if encryption is compiled in (libgcrypt

was present at compile time).

SEE ALSO: SIGN$()

652

CHAPTER 6. COMMAND REFERENCE 6.23. V

Command: VSYNC

Syntax: VSYNC

DESCRIPTION:

Enables synchronization with the screen. Actually this is a synonym for SHOW-

PAGE. Graphic output will not be shown in the window until SHOWPAGE (or VSYNC).

On the framebuffer version of X11-Basic (e.g. TomTom) this command has no ef-

fect.

SEE ALSO: SHOWPAGE

653

6.24. W CHAPTER 6. COMMAND REFERENCE

6.24 W

654

CHAPTER 6. COMMAND REFERENCE 6.24. W

Command: WATCH

Syntax: WATCH filename$

DESCRIPTION:

WATCH can be used to monitor individual files, or to monitor directories. When

a directory is monitored, FILEEVENT$ will return events for the directory itself, and

for files inside the directory. Note that WATCH is not available on every operating

system.

EXAMPLE:

WATCH "/tmp"
DO
a$=FILEEVENT$
IF LEN(a$)
PRINT a$

ENDIF
LOOP

SEE ALSO: FILEEVENT$

655

6.24. W CHAPTER 6. COMMAND REFERENCE

Command: WAVE

Syntax: WAVE c%,form%[,attack,decay,sustain,release]

DESCRIPTION:

WAVE controls the internal sound synthesizer. You can specify a waveform

generator and an envelope for each of the 16 sound channels.

Set the given parameters for channel c%. There are 16 sound channels which

are mixed together, so c% may be between 0 and 15.

If c% is omitted or -1, the parameters are set for all channels.

form% specifies the tone generator for the specified channel:

Tone Generators:
0 - silence (default for channels 1-15)
1 - sin wave (default for channel 0)
2 - square wave
3 - triangular wave
4 - sawtooth wave
5 - white noise

The envelope of the tones are specified using 4 parameters: attack, decay, sustain

and release. attack, decay and release values are specified in seconds; sustain

level values are between 0 and 1.

* "Attack time" is the time taken for initial run-up of level from nil to peak, begin-

ning when the SOUND command is executed.

* "Decay time" is the time taken for the subsequent run down from the attack

level to the designated sustain level, after the attack part of the envelope is over.

* "Sustain level" is the level during the main sequence of the sound’s duration,

until duration time is reached (e.g. 0.8).

* "Release time" is the time taken for the level to decay from the sustain level to

zero after the duration time is over.

656

CHAPTER 6. COMMAND REFERENCE 6.24. W

If you want a permanent tone, set attack to 0, sustain to 1 and decay as well as

release to any value.

The WAVE commands allow to simulate real instruments, e.g. strings, trumpet

or piano. A realistic sound can only be achieved by also using higher harmon-

ics. To simulate this, you will have to use more than one channel and play them

simultaneously.

Volume, frequency and duration for the specified sound channel are set by the

SOUND command.

EXAMPLE:

WAVE 1,1,0,,1 ! set sine wave, no attack
SOUND 1,500,1 ! play a permanent tone on channel 1

SEE ALSO: SOUND, PLAYSOUND

657

6.24. W CHAPTER 6. COMMAND REFERENCE

Command: WHILE

Syntax: WHILE <num-expression>

DESCRIPTION:

WHILE initiates a WHILE...WEND loop. The loop ends with WEND and execu-

tion reiterates while the WHILE <num-expression> is not FALSE (not null). Unlike

a REPEAT...UNTIL loop, the loop body is not necessarily executed at least once.

EXAMPLE:

WHILE NOT EOF(#1)
LINEINPUT #1,a$

WEND

SEE ALSO: WEND, DO

658

CHAPTER 6. COMMAND REFERENCE 6.24. W

Command: WEND

Syntax: WEND

DESCRIPTION:

WEND terminates a WHILE...WEND loop.

EXAMPLE:

WHILE NOT EOF(#1)
LINEINPUT #1,a$

WEND

SEE ALSO: WHILE, DO

659

6.24. W CHAPTER 6. COMMAND REFERENCE

Variable: WIN32?

Syntax: <boolean-result>=WIN32?

DESCRIPTION:

Returns TRUE (-1) If the program is running under MS WINDOWS (32 bit).

EXAMPLE:

IF WIN32?
a$=FSFIRST$("C:\","*.dat")

ELSE
a$=FSFIRST$("/tmp","*.dat")

ENDIF

SEE ALSO: UNIX?, TT?, ANDROID?

660

CHAPTER 6. COMMAND REFERENCE 6.24. W

Function: WORD()

Syntax: a=WORD(b)

DESCRIPTION:

Returns lower 16 bits of b and expands sign. B is always treated as an integer.

SEE ALSO: BYTE(), CARD(), SWAP()

661

6.24. W CHAPTER 6. COMMAND REFERENCE

Function: WORD$()

Syntax: a$=WORD$(b$,n[,delimiter$])

DESCRIPTION:

Returns the n’th word of b$. Words are separated by space or by the first

character of delimiter$.

EXAMPLE:

a$=WORD$("Hello, this is a string.",3)
b$=WORD$("Hello, this is a string.",2,",")

SEE ALSO: SPLIT, WORT_SEP()

662

CHAPTER 6. COMMAND REFERENCE 6.24. W

Command: WORT_SEP

Syntax: WORT_SEP t$,d$,mode,a$,b$

DESCRIPTION:

Splits up string t$ into two parts a$ and b$ concerning a delimiter string d$. So

that t$=a$+d$+b$.

mode can be:

0 -- default
1 -- do not search parts of t$ which are in brackets.

Quoted parts of the string are not split up.

EXAMPLE:

WORT_SEP "Hello, this is a string."," ",0,a$,b$

Comment:

This command should not be used anymore. Please use SPLIT instead.

SEE ALSO: SPLIT, WORT_SEP()

663

6.24. W CHAPTER 6. COMMAND REFERENCE

Function: WORT_SEP()

Syntax: <num-result>=WORT_SEP(t$,d$,mode,a$,b$)

DESCRIPTION:

Splits up string t$ into two parts a$ and b$ concerning a delimiter string d$. So

that t$=a$+d$+b$.

mode can be:

0 -- default
1 -- do not search parts of t$ which are in brackets.

Quoted parts of the string are not split up.

The return value can be:

2 -- The string has been split up.
1 -- The string did not contain d$, a$=t$, b$=""
0 -- The string was empty. a$="",b$=""

SEE ALSO: SPLIT

664

CHAPTER 6. COMMAND REFERENCE 6.25. X

6.25 X

665

6.25. X CHAPTER 6. COMMAND REFERENCE

Command: XLOAD

Syntax: XLOAD

DESCRIPTION:

Opens a fileselector where the user can select a basic source file which then

will be loaded into memory.

SEE ALSO: XRUN, LOAD, FILESELECT

666

CHAPTER 6. COMMAND REFERENCE 6.25. X

Operator: XOR

Syntax: <num-expression1> XOR <num-expression2>

DESCRIPTION:

Logical exclusive OR operator. XOR returns FALSE (0) if both arguments have

the same logical value. The operator also works on each bit.

Table:

A | B | A XOR B
----+-----+------------
-1 | -1 | 0
-1 | 0 | -1
0 | -1 | -1
0 | 0 | 0

EXAMPLE:

PRINT 3=3 XOR 4>2 Result: 0 (false)
PRINT 3>3 XOR 5>3 Result: -1 (true)

PRINT (4 XOR 255) Result: 251

SEE ALSO: NAND, OR, NOT, AND

667

6.25. X CHAPTER 6. COMMAND REFERENCE

*

Function: XOR()

Syntax: c%=XOR(a%,b%)

DESCRIPTION:

XOR(a,b) returns the bit-wise exclusive or of the two arguments.

EXAMPLE:

PRINT XOR(7,5) ! Result: 2

SEE ALSO: OR(), AND, XOR

668

CHAPTER 6. COMMAND REFERENCE 6.25. X

Command: XRUN

Syntax: XRUN

DESCRIPTION:

Opens a fileselector where the user can select a basic source file which then

will be loaded into memory and executed.

SEE ALSO: XLOAD, RUN, FILESELECT

669

6.25. X CHAPTER 6. COMMAND REFERENCE

Function: XTRIM$()

Syntax: b$=XTRIM$(a$)

DESCRIPTION:

XTRIM$(a$) returns a$ with following modifications:

1. replace Tab’s (CHR$(9)) by space,

2. replace double spaces by single ones,

3. remove leading and trailing spaces,

4. parts of the string which are in quotes ("") will not be changed,

5. convert all parts of the string, which are outside quotes ("") to upper case.

SEE ALSO: TRIM$(), REPLACE$(), UPPER$()

670

X11-Basic
7 FREQUENTLY ASKED QUESTIONS

How easy is it to hack into my programs?

Well, first of all: it is possible. The basic source files (.bas) are of course readable

by any text editor and such modifiable. The bytecode compiled code (.b) is already

harder to read and nearly impossible to convert back into source code. However,

since X11-basic is open source, everybody who wants to can look into the source-

code and can read all information necessary to decode the bytecode and also

modify it. It’s possible but a real big job to do. On the level of bytecode translated

to C source also here someone could modify it. Once the bytecode is compiled

into real machine language, the code is as safe from hackers as any other code is

(means that there is nearly no way back).

Even if you incorporate the bytecode into the virtual machine, your program

should be safe from snoopers, they might not even know your program is byte-

code generated. You can also instruct the bytecode compiler not to attach any

symbol table or extra debugging information.

Do I need a license to distribute my programs?

No. You don’t need a license to use X11-Basic (it’s free), and you definitely don’t

need any license to distribute or sell your programs. The only agreement you have

to worry about is that if you choose to use X11-Basic, you assume any and all

consequences, direct or indirectly from the use of X11-Basic. Which means: don’t

blame me if it doesn’t work as you think it should. X11-Basic can be used for

any task, whether it’s profit-seeking or otherwise. I do not want to know, and you

don’t pay me a cent. You don’t even have to acknowledge that your program was

created with X11-Basic (although this would be a nice gesture). You’re allowed to

bundle X11-Basic along with your program(s), as long as the user is well informed

that it’s not buying into X11-Basic, but rather, buying into your program. How is

that done? By not even advertising that your distribution includes a copy of X11-

Basic. However, if you want to distribute or modify X11-Basic itself, or if you want

to incorporate parts of the X11-Basic sourcecode, you will need to follow the GNU

public license.

671

CHAPTER 7. FREQUENTLY ASKED QUESTIONS

How fast is X11-Basic?

The answer depends on the way an X11-Basic program is run: It depends on if

the code is interpreted, run as bytecode in a virtual machine, or being compiled to

native machine language. Generally we find:

1. X11-Basic programs run by the interpreter are slow,

2. X11-Basic programs compiled to bytecode and then run in the X11-Basic

virtual machine (xbvm) is fast, but

3. X11-Basic bytecode compiled natively to real machine language is even faster.

4. arbitrary precision numbers and calculations are slow, but

5. 64bit floating point and complex number calculations as well as 32bit integers

are very fast.

Bytecoded programs are always interpreted faster than scripted programming

languages. The X11-Basic compiler can translate the X11-Basic bytecode to C,

which then can be compiled to native machine language using any C-compiler

(preferably gcc on UNIX systems). Obviously your programs will be slower than

optimized C/C++ code but it already comes close.

If you need highest possible speed you can load and link a separate DLL/shared

object with the time critical part of your code written in another language (e.g. C or

Assembler).

A speed comparison was done with the Whetstone benchmark (−→ Whets.bas).

This shows, that bytecode-programs are about 19 times faster than the interpreted

code and a natively compiled program can run about 28 times faster.

UTF-8 character set

I downloaded the last update to X11-Basic but I have a problem with the UTF-8

character set... I cannot use no more the ascii set, especially the graphic part of it

... I made a small game that use them now it is not working no more... Is there a

way to fix this problem?
A: Yes, there is. All characters are still there, but you cannot access them with

a simple CHR$(). One method is to copy the characters from a unicode table like
this:

[http://de.wikipedia.org/wiki/Unicodeblock_Rahmenzeichnung Frames]

672

CHAPTER 7. FREQUENTLY ASKED QUESTIONS

with the mouse into the editor. You need to use a UTF-8 capable editor, e.g.

pico, nano, gedit. If this is not working for you, alternatively you can code the

character yourself by the unicode number:

FUNCTION utf8$(unicode%)

IF unicode%<0x80

RETURN CHR$(unicode%)

ELSE IF unicode%<0x800

RETURN CHR$(0xc0+(unicode%/64 AND 0x1f))+CHR$(0x80+(unicode% AND 0x3f))

ELSE

RETURN CHR$(0xe0+(unicode%/64/64 AND 0xf))+CHR$(0x80+(unicode%/64 AND 0x3f))+ \

CHR$(0x80+(unicode% AND 0x3f))

ENDIF

ENDFUNCTION

So e.g. the charackter 0x250C can be coded with @utf8$(0x250C).

GUI-Designer

Is there a GUI-Designer for the graphical user unterface functions of X11-Basic?

A: Well, so far nobody has made a real efford to write a real graphical GUI

designer. But the program gui2bas may help creating GUI forms. The input is a

very siple ASCII-File (*.gui) which defines the interface. So far many GEM object

types are supportet (and even Atart ST *.rsc-files may be converted to *.gui
files with the rsc2gui program.) but support for listboxes, popup-menues and

Tooltips may be included in future.

Others

Q: My old ANSI Basic Programs (with line-Numbers) produce lots
of errors in the interpreter. How can I run classic
(ANSI) Basic programs?

A: Classic Basic programs have to be converted before they can
be run with X11-Basic. With the bas2x11basic converter
program most of this convertion will be done automatically.

673

X11-Basic
8 COMPATIBILITY

8.1 General remarks

X11-Basic deviates in numerous aspects from ANSI BASIC. It in event is also dif-

ferent from GfA-Basic (Atari ST) all though it tries to be compatible and really looks

similar:

ELSE IF vs. ELSEIF

This interpreter uses the ELSE IF form of the "else if" statement with a space

between ELSE and IF. In contrast, ANSI BASIC uses ELSEIF and END IF. Other

interpreters may also use the combination ELSEIF and END IF.

Local variables

Local variables must be declared local in the procedure/function. Any other vari-

ables are treated as global.

Call By-Value vs. By-Reference

Variables in a GOSUB statement as in GOSUB test(a) are passed "by-value" to

the PROCEDURE: the subroutine gets the value but can not change the variable

from which the value came from. To pass the variable "by-reference", use the VAR

keyword as in "GOSUB test(VAR a)": the subroutine then not only gets the value

but the variable itself and can change it (for more information, see the documenta-

tion of the GOSUB statement). The same rules apply to FUNCTION: VAR in the

parameter list of a function call allows a FUNCTION to get a variable parameter

"by-reference". In contrast, traditional BASIC interpreters always pass variables in

parameter lists "by-reference". The problem with "by-reference" parameters is that

you must be fully aware of what happens inside the subroutine: assignments to

parameter variables inside the subroutine might change the values of variables in

the calling line.

674

CHAPTER 8. COMPATIBILITY 8.1. GENERAL REMARKS

Assignment operator

X11-BASIC does not have an assignment operator but overloads the equal sign

to act as the assignment operator or as comparison operator depending on con-

text: In a regular expression, all equal signs are considered to be the comparison

operator, as in IF (a=2). However, in an "assignment-style" expression (as in

LET a=1), the first equal sign is considered to be the assignment operator. Here

is an example which assigns the result of a comparison (TRUE or FALSE) to the

variable <a> and thus shows both forms of usage of the equal sign:

a=(b=c)

Assignments to modifiable l(eft)value

Some implementations of BASIC allow the use of functions on the left side of as-

signments as in MID$(a$,5,1)="a". X11-Basic does not support this syntax but

requires a variable (a "modifiable lvalue") on the left side of such expressions.

INT() function

In X11-Basic INT() gives probably different results for negative numbers and for

numbers bigger than 2147483648. INT() is internally implemented as "cast to int"

(has ever be like this, very fast, and also the compiler relies on this). This means,

that the argument must not contain numbers which cannot be converted to 32bit

integers. And also the fractional part of the floating point numbers is cut off (like

TRUNC()) instead of rounded down (like on most other BASIC dialects). If you

rely on a correct behaviour for negative numbers and for big numbers you probably

want to use FLOOR() instead.

DIM Statement

In X11-Basic the DIM statement probably behaves different compared to other di-

alects of BASIC. DIM in X11-Basic will reserve space in memory for exacly the

number of indexes specified. Other BASIC dialect do reserve one more than spec-

ified. If you are surprised getting "Field index out of range" errors, this probably

comes from accessing a field index which is not there. For example: DIM a(5) will

reserve memory for exactly 5 values: a(0), a(1), a(2), a(3), and a(4). a(5) does not

exist and therefor you will get an error if you try to access it. The way X11-Basic

675

8.1. GENERAL REMARKS CHAPTER 8. COMPATIBILITY

implemented it is more logical and similar to C and JAVA. But if you are used to

thinking that an array starts with the first index 1 (instead of 0) you will probably be

a little confused.

LET Statement

Al though it is implemented into X11-Basic, there is no benefit in using the LET

statement. On contrary, using LET makes your program slower than necessary.

Just leave it out, do not use it. Assignments can be made without the LET state-

ment.

TOS/GEM implementation

Because Gfa-Basic on ATARI-ST makes much use of the built in GUI functions of

the ATARI ST, which are not available on other operating systems, X11-Basic can

only have limited compatibility. GEM style (and compatible) ALERT boxes, menus

and object trees are supported by X11-Basic and can be used in a similar way.

Even ATARI ST *.rsc files can be loaded. But other functions like LINEA functions,

the VDISYS, GEMSYS, BIOS, XBIOS and GEMDOS calls are not possible. Also

many other commands are not implemented because the author thinks that they

have no useful effect on UNIX platforms. Some might be included in a later version

of X11-Basic (see the list below). Since many GfA-Basic programs make use of

more or less of these functions, they will have to be modified before they can be

run with X11-Basic.

The INLINE statement

The INLINE statement is not supported, because the source code of X11-Basic

programs is pure ASCII text. But an alternative has been implemented. (see

INLINE$()).

Incompatible data types

X11-Basic uses the default datatype (without suffix) and the integer data type (Suf-

fix %). This is compatible with most of the BASIC dialects. However the complex

data type (suffix #) is not supported by most of the BASIC dialects and the suffix #

is sometimes optionally used by regular float variables (like in GFA-Basic).

676

CHAPTER 8. COMPATIBILITY 8.2. GFA-BASIC COMPATIBILITY

The suffix & which is used for big integer variables could be confused with the

short int data type of X11-Basic which also uses this suffix. However, in general

these programs will run and give correct results. Using the infinite precision rou-

tines is just slower.

Short int and byte data types will not be used by X11-Basic. There used be

useful only on computers with short memory do save some RAM. These times

have passed, so that the statndard integer data type (with the suffix %) will do.

The suffix | will be reserved for future use, most likely for multiple precision

floating point variables.

8.2 GFA-Basic compatibility

Following GFA-Basic commands and functions are not supported and probably

never will be. Most of them are obsolete on UNIX systems. When porting from

GFA-Basic to X11-Basic, they have to be removed or replaced by an alternative

routine:

obsolete, because there is an alternative function in X11-Basic:

== Comparison operator for approximately equal –> =

ARECT, ATEXT LINE-A functions –> BOX, TEXT
ALINE, HLINE LINE-A functions –> LINE
ACHAR, ACLIP –> TEXT, CLIP
APOLY –> POLY
COSQ(), SINQ() quick table based cosine/sine –> COS(), SIN()
DIR Lists the files on a disc. –> SYSTEM "ls"
DRAW Draws points and lines. –> PLOT, LINE
FILES Lists the files on a disk. –> SYSTEM "ls -l"
FRE() Returns the amount of memory free (in bytes). –> see below

MAT CLR clears a matrix/makes a zero matrix –> ARRAYFILL, CLR, 0()
MAT DET calculates the determinat of a matrix –> DET()
MAT INV calculates the inverse of a matrix –> INV()
MAT ONE creates a unit matrix –> 1()
MAT TRANS calculates the transverse of a matrix –> TRANS()
MSHRINK() Reduces the size of a storage area –> REALLOC()
NAME AS Renames an existing file. –> RENAME

677

8.2. GFA-BASIC COMPATIBILITY CHAPTER 8. COMPATIBILITY

QSORT Sorts the elements of an array. –> SORT
RC_COPY Copies rectangular screen sections (–> COPYAREA)

RESERVE Increases or decreases the memory used by basic (obsolete)

RND as a sysvar see RND()
ROL&(), ROL%() Rotates a bit pattern left. –> ROL()
ROR&(), ROR%() Rotates a bit pattern right. –> ROR()
SHEL_FIND() −→ SYSTEM "find ..."
SHL&(), SHL%() Shifts a bit pattern left –> SHL()
SHR&(), SHR%() Shifts a bit pattern left –> SHR()
SYSTEM obsolete −→ QUIT
SHEL_ENVRN() −→ ENV$()
SHEL_READ obsolete −→ PARAM$()
SSORT Sorts using the Shell-Metzner method. –> SORT
THEN keyword in If statements (obsolete)

For some GFA-Basic commands you can construct replacement functions in

X11-Basic like:

’ Get the free memory available (in Bytes)
’ n=0 physical memory
’ n=1 Swap space
FUNCTION fre(n)
LOCAL a,t$,a$,unit$,s$
IF n=0

s$="MemFree:"
ELSE

s$="SwapFree:"
ENDIF
a=FREEFILE()
OPEN "I",#a,"/proc/meminfo"
WHILE NOT EOF(#a)

LINEINPUT #a,t$
EXIT IF word$(t$,1)=s$

WEND
CLOSE #a
t$=TRIM$(t$)

678

CHAPTER 8. COMPATIBILITY 8.2. GFA-BASIC COMPATIBILITY

a$=word$(t$,2)
unit$=word$(t$,3)
IF unit$="kB"
RETURN VAL(a$)*1024

ELSE
RETURN VAL(a$)

ENDIF
ENDFUNCTION

or

DEFFN ob_x(adr%,idx%)=DPEEK(adr%+24*idx%+16)
DEFFN ob_y(adr%,idx%)=DPEEK(adr%+24*idx%+18)
DEFFN ob_w(adr%,idx%)=DPEEK(adr%+24*idx%+20)
DEFFN ob_h(adr%,idx%)=DPEEK(adr%+24*idx%+22)

obsolete, because TOS-Specific, and no similar function on other OSes exist:

ADDRIN, ADDROUT address of the AES Address Input/Output blocks

APPL_EXIT() Declare program has finished

APPL_INIT() Announce the program as an application.

APPL_TPLAY() Plays back a record of user activities

APPL_TRECORD() makes a record of user activities

BIOS() call BIOS routines

CONTRL Address of the VDI control table.

FGETDTA() Returns the DTA (Disk Transfer Address).

FSETDTA Sets the address of the DTA

GB, GCONTRL Address of the AES Parameter/control Block

GDOS? Returns TRUE (-1) if GDOS is resident

GEMDOS() call the GEMDOS routines.

GEMSYS call the AES routine

GINTIN, GINTOUT address of the AES Integer input/output block.

HIMEM address of the area of memory which is not allocated

INTIN, INTOUT address of the VDI integer Input/output block.

L~A Returns base address of the LINE-A variables.

MENU_REGISTER() Give a desk accessory a name

MONITOR Calls a monitor resident in memory.

679

8.2. GFA-BASIC COMPATIBILITY CHAPTER 8. COMPATIBILITY

SHEL_GET, SHEL_PUT obsolete

SHEL_WRITE obsolete

VDIBASE, VDISYS VDI functions

VQT_EXTENT coordinates of a rectangle which surround the text

VQT_NAME() VDI function

VSETCOLOR TOS specific

VST_LOAD_FONTS(), VST_UNLOAD_FONTS()
V_CLRWK(), V_CLSVWK(), V_CLSWK(), V_OPNVWK()
V_OPNWK(), V_UPDWK()VDI-GDOS functions

V~H Returns the internal VDI handle

W_HAND(#n) Returns the GEM handle of the window

W_INDEX() Returns the window number of the specified GEM handle.

WORK_OUT() Determines the values from OPEN_WORKSTATION.

XBIOS() call XBIOS system routines.

Obsolete, because ATARI-ST-Hardware-Specific, and no similar function exists on UNIX

or SDL platforms:

CHDRIVE Sets the default disk drive –> CHDIR
DMACONTROL, DMASOUND Controls the DMA sound (see PLAYSOUND)

INPMID$ read data from the MIDI port

LPENX, LPENY Returns the coordinates of a light pen.

PADT(), PADX(), PADY() Reads the paddle on the STE

SDPOKE, SLPOKE, SPOKE Supervisor mode memory access

Not supported because of other reasons:

APPL_READ() read from the event buffer.

APPL_WRITE() write to the event buffer.

BASEPAGE address of the basepage

BITBLT Raster copying command

CFLOAT() Changes integer into a floating point number.

DEFBIT, DEFBYT, DEFWRD, DEFFLT, DEFSTR sets the variable type

DFREE() free space on a disc

680

CHAPTER 8. COMPATIBILITY 8.2. GFA-BASIC COMPATIBILITY

GETSIZE() return the number of Bytes required by a screen area

HARDCOPY Prints the screen –> save screen

INPAUX$ read data from the serial port

KEYDEF Assign a string to a Function Key.

LLIST Prints out the listing of the current program.

LPOS() column in which the printer head is located

LPRINT prints data on the printer.

PSAVE save with protection

RCALL Calls an assembler routine

SCRP_READ() communication between GEM programs.

SCRP_WRITE() "

SETCOLOR i,r,g,b set rgb value of color cell (–>GET_COLOR())

SETTIME Sets the time and the date.

WINDTAB Gives the address of the Window Parameter Table.

WIND_CALC(), WIND_CLOSE(),
WIND_CREATE(), WIND_DELETE(), WIND_FIND(),
WIND_GET(), WIND_OPEN(),
WIND_SET(), WIND_UPDATE() GEM-Window-Function

These GFA-Basic commands may be supported in a later ver-

sion of X11-Basic:

APPL_FIND(fname$) Returns the ID of the sought after application.

BYTE{x} read the contents of the address x

C: Calls a C or assembler program with parameters as in C

CARD{x} Reads/writes a 2-byte unsigned integer

CHAR{x} Reads a string of bytes until a null byte is encountered

DEFLIST x Defines the program listing format.

DEFNUM n Affects output of numbers by the PRINT command

DELETE x(i) Removes the i-th element of array x.

DO UNTIL extension

DO WHILE extension

DOUBLE{x} reads/writes an 8-byte floating point variable

EVNT_BUTTON() Waits for one or more mouse clicks

681

8.2. GFA-BASIC COMPATIBILITY CHAPTER 8. COMPATIBILITY

EVNT_DCLICK() Sets the speed for double-clicks of a mouse button.

EVNT_KEYBD() Waits for a key to be pressed and returns a word

EVNT_MESAG() Waits for the arrival of a message in the event buffer.

EVNT_MOUSE() Waits for the mouse pointer to be located inside

EVNT_MULTI() Waits for the occurrence of selected events.

EVNT_TIMER() waits for a period of time

FATAL Returns the value 0 or -1 according to the type of error

FIELD Divides records into fields.

FORM INPUT Enables the insertion of a character string

FORM INPUT AS the current value of a$ is displayed, and can be edited.

FORM_BUTTON() Make inputs in a form possible using the mouse.

FORM_ERROR() Displays the ALERT associated with the error numbered

FORM_KEYBD() Allows a form to be edited via the keyboard.

FSEL_INPUT() Calls the AES fileselect library

GET # Reads a record from a random access file.

GRAF_DRAGBOX() a rectangle to be moved about the screen

GRAF_GROWBOX() Draws an expanding rectangle.

GRAF_HANDLE() supplies the size of a character from the system set

GRAF_MKSTATE() supplies the current mouse coordinates

GRAF_MOUSE) allows the mouse shape to be changed.

GRAF_MOVEBOX() a moving rectangle with constant size

GRAF_RUBBERBOX() draws an outline of a rectangle

GRAF_SHRINKBOX() Draws an shrinking rectangle.

GRAF_SLIDEBOX() moves one rectangular object within another

GRAF_WATCHBOX() monitors an object tree while a mouse button is pressed

HTAB Positions the cursor to the specified column.

OUT?() output to device

INSERT Inserts an element into an array.

INT{x} Reads/writes a 2 byte signed integer from/to address x.

KEYGET n similar to INKEY$ but wait

KEYLOOK n similar to INKEY$ but put back chars

KEYTEST n similar to INKEY$

KEYPAD n Sets the usage of the numerical keypad.

KEYPRESS n This simulates the pressing of a key.

LONG{x} Reads/writes a 4 byte integer from/to address x. Abbrev

LOOP UNTIL conditionextension

LOOP WHILE conditionextension

682

CHAPTER 8. COMPATIBILITY 8.2. GFA-BASIC COMPATIBILITY

LSET var=string Puts the ’string’ in the string variable ’var’ left justified

MAT ADD a(),b()
MAT ADD a(),x
MAT CPY a([i,j])=b([k,l])[,h,w]
MAT INPUT #i,a()
MAT MUL
MAT MUL a(),x
MAT MUL x=a()*b()
MAT MUL x=a()*b()*c()
MAT NORM a(),{0/1}
MAT PRINT [#i]a[,g,n]
MAT QDET x=a([i,j])[,n]
MAT RANG x=a([i,j])[,n]
MAT READ a()
MAT SET a()=x
MAT SUB a(),b()
MAT SUB a(),x
MAT XCPY a([i,j])=b([k,l])[,h,w]
MAT BASE {0/1}
MENU(x) Returns the information about an event in the variable

MENU OFF Returns a menu title to ’normal’ display.

MENU_BAR() Displays/erases a menu bar (from a resource file)

MENU_ICHECK() Deletes/displays a tick against a menu item.

MENU_IENABLE() Enables/disables a menu entry.

MENU_TEXT() Changes the text of a menu item.

MENU_TNORMAL() Switches the menu title to normal/inverse video.

MID$(a$,x[,y])= (as a command/lvalue)

MODE representation of decimal point, date and files

OBJC_CHANGE() Changes the status of an object.

OBJC_EDIT() Allows input and editing

OBJC_ORDER() re-positions an object within a tree.

OB_ADR() Gets the address of an individual object.

OB_FLAGS() Gets the status of the flags for an object.

OB_H() Returns the height of an object

OB_HEAD() Points to the object’s first child

OB_NEXT() Points to the following object on the same level

OB_SPEC() Returns the address of the data structure

683

8.2. GFA-BASIC COMPATIBILITY CHAPTER 8. COMPATIBILITY

OB_STATE() returns the status of an object

OB_TAIL() Points to the objects last child

OB_TYPE() Returns the type of object specified.

OB_W() Returns the width of an object

OB_X(), OB_Y() relative coordinates of the object

ON BREAK influence behavior of CTRL-C

OPTION BASE determine whether an array is to contain a zero element

RCALL Calls an assembler routine

RC_INTERSECT() Detects whether two rectangles overlap.

RECALL Inputs n lines from a text file

RECORD Sets the number of the next record (GET#, PUT#)

RSET a$=b$ Moves a string expression, right justified to a string.

RSRC_OBFIX() converts the coordinates of an object

RSRC_SADDR() sets the address of an object.

RUN <filename> see RUN

SETDRAW see DRAW

SINGLE{x} Reads/writes a 4 byte floating point

SPRITE Puts a sprite

STORE Fast save of a string array as a text file.

TRON# Tron to file

TRON proc procedure is called before the execution of each command

VTAB positions the cursor to the specified line number

WRITE Stores data in a sequential file

_DATA Specifies the position of the DATA pointer.

STICK control the joystick (via SDL only)

684

CHAPTER 8. COMPATIBILITY 8.3. IDEAS FOR FUTURE RELEASES OF X11-BASIC

Following commands have a different meaning and/or syntax

in X11-Basic:

GFA-BASIC X11-Basic

SYSTEM QUIT
LINE INPUT LINEINPUT
SOUND SOUND
WAVE WAVE
VSYNC -

ON MENU MENU
ON MENU GOSUB ... MENUDEF
MENU a$() MENUDEF
MENU OFF -

MENU KILL MENUKILL
MENU() -

MONITOR SYSTEM
EXEC EXEC
RENAME AS RENAME

Compiler specifics

• PRINT statements will not compile correctly sometimes. Avoid to use func-

tions and variables in print statements, which are not used anywhere else.

• ON ERROR GOSUB will not work correctly in compiled programs.

• ON ERROR GOTO will not work correctly in compiled programs.

• ON BREAK GOSUB will not work correctly in compiled programs.

• ON BREAK GOTO will not work correctly in compiled programs.

8.3 Ideas for future releases of X11-Basic

These are some ideas for new commands, which are not GFA-commands and

which might be implemented in X11-Basic in future:

SPRINT var$;[USING...;]... similar to sprintf() in C
MAT_PRINT or PRINT a()

685

8.3. IDEAS FOR FUTURE RELEASES OF X11-BASIC CHAPTER 8. COMPATIBILITY

========================
implementation of mmap() in X11-Basic:

open "I",#1,"myfile"
adr%=map("I|O|U",#1,len,offset)

MSYNC adr%,len

UNMAP adr%,len
CLOSE #1

offset should be a multiple of the page size
as returned by getpagesize().

"I" --> PROT_READ MAP_PRIVATE
"O" --> PROT_WRITE MAP_SHARED
"U" --> PROT_READ PROT_WRITE MAP_SHARED

"*L" --> MAP_LOCKED

===

modifiable lvalues:
MID$()=
CHAR{}=
PRG$()=
new command (for threads):

EXSUB (instead of gosub) procedure

alternative:
FIRE procedure()
or
KICK procedure()

SPAWN

686

CHAPTER 8. COMPATIBILITY 8.3. IDEAS FOR FUTURE RELEASES OF X11-BASIC

it must be guaranteed that the program flow control and
the access to variables etc, is thread-safe.
This might be difficult....

===
USB support: (not completely done, I need someone

who uses this for testing...)

OPEN "UU",#2,devicename%,vid,pid,class,endpoint
SEND_CONTROL #2,t$
SEND #2,t$
RECEIVE #2,t$
RECEIVE_BULK #2,t$
EOF(#2)
INP?(#2)
CLOSE #2

===
SQL support ???

use the sqlite excecutable and SYSTEM$()

===
arbitrary precision (floatingpoint) numbers
** integers and floatingpoint/complex numbers
a##=1.84902948755588584888888888888888834

a|=

we need new parsers, type guessing routine,
all operations need to work, complex functions..... Casts...

===

687

8.3. IDEAS FOR FUTURE RELEASES OF X11-BASIC CHAPTER 8. COMPATIBILITY

Support for the gcrypt library.
-------encryption---------------

LIBGCRYPT:
hash$=HASH$(data$[,typ%]) (done)
sdata$=SIGN$(data$,privkey$) (done)
verify%=VERIFY$(sdata$,pubkey$) (done)
cdata$=ENCRYPT$(data$,key$[,typ%]) (done)
data$=DECRYPT$(cdata$,key$[,typ%]) (done)

err=KEYGEN(typ%,pubkey$,privkey$)

688

X11-Basic
A GNU LICENSE

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the

sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,

either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to

get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be

free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for

free software.

We have designed this License in order to use it for manuals for free software, because free software needs

free documentation: a free program should come with manuals providing the same freedoms that the software does.

But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter

or whether it is published as a printed book. We recommend this License principally for works whose purpose is

instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright

holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free

license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers

to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the

license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied

verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively

with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related

matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part

a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a

matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical

or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant

Sections, in the notice that says that the Document is released under this License. If a section does not fit the above

689

APPENDIX A. GNU LICENSE

definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero

Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,

in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5

words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose speci-

fication is available to the general public, that is suitable for revising the document straightforwardly with generic text

editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing

editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for

input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup,

has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format

is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input for-

mat, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,

PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and

JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors,

SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated

HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,

legibly, the material this License requires to appear in the title page. For works in formats which do not have any

title page as such, "Title Page" means the text near the most prominent appearance of the work’s title, preceding

the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains

XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section

name mentioned below, such as "Acknowledgments", "Dedications", "Endorsements", or "History".) To "Preserve

the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according

to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to

the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as

regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no

effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially, provided

that this License, the copyright notices, and the license notice saying this License applies to the Document are

reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not

use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.

However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies

you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

690

APPENDIX A. GNU LICENSE

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering

more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that

carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the

back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover

must present the full title with all words of the title equally prominent and visible. You may add other material on the

covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document

and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many

as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a

machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-

network location from which the general network-using public has access to download using public-standard network

protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you

must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this

Transparent copy will remain thus accessible at the stated location until at least one year after the last time you

distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any

large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,

provided that you release the Modified Version under precisely this License, with the Modified Version filling the role

of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy

of it. In addition, you must do these things in the Modified Version:

A Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those

of previous versions (which should, if there were any, be listed in the History section of the Document). You

may use the same title as a previous version if the original publisher of that version gives permission.

B List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifi-

cations in the Modified Version, together with at least five of the principal authors of the Document (all of its

principal authors, if it has fewer than five), unless they release you from this requirement.

C State on the Title page the name of the publisher of the Modified Version, as the publisher.

D Preserve all the copyright notices of the Document.

E Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F Include, immediately after the copyright notices, a license notice giving the public permission to use the

Modified Version under the terms of this License, in the form shown in the Addendum below.

G Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the

Document’s license notice.

H Include an unaltered copy of this License.

I Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year,

new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled

"History" in the Document, create one stating the title, year, authors, and publisher of the Document as given

on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

691

APPENDIX A. GNU LICENSE

J Preserve the network location, if any, given in the Document for public access to a Transparent copy of the

Document, and likewise the network locations given in the Document for previous versions it was based

on. These may be placed in the "History" section. You may omit a network location for a work that was

published at least four years before the Document itself, or if the original publisher of the version it refers to

gives permission.

K For any section Entitled "Acknowledgments" or "Dedications", Preserve the Title of the section, and preserve

in the section all the substance and tone of each of the contributor acknowledgments and/or dedications

given therein.

L Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers

or the equivalent are not considered part of the section titles.

M Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant

Section.

O Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections

and contain no material copied from the Document, you may at your option designate some or all of these sections

as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These

titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Mod-

ified Version by various parties–for example, statements of peer review or that the text has been approved by an

organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a

Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text

and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document

already includes a cover text for the same cover, previously added by you or by arrangement made by the same

entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission

from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for

publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in

section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of

all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license

notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may

be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,

make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author

or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the

list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming

one section Entitled "History"; likewise combine any sections Entitled "Acknowledgments", and any sections Entitled

"Dedications". You must delete all sections Entitled "Endorsements".

692

APPENDIX A. GNU LICENSE

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and

replace the individual copies of this License in the various documents with a single copy that is included in the

collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all

other respects.

You may extract a single document from such a collection, and distribute it individually under this License,

provided you insert a copy of this License into the extracted document, and follow this License in all other respects

regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on

a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation

is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the

Document is included in an aggregate, this License does not apply to the other works in the aggregate which are

not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document

is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket

the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.

Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the

terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright

holders, but you may include translations of some or all Invariant Sections in addition to the original versions of

these Invariant Sections. You may include a translation of this License, and all the license notices in the Document,

and any Warranty Disclaimers, provided that you also include the original English version of this License and the

original versions of those notices and disclaimers. In case of a disagreement between the translation and the

original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgments", "Dedications", or "History", the requirement (section

4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this

License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically

terminate your rights under this License. However, parties who have received copies, or rights, from you under this

License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from

time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new

693

APPENDIX A. GNU LICENSE

problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular

numbered version of this License "or any later version" applies to it, you have the option of following the terms and

conditions either of that specified version or of any later version that has been published (not as a draft) by the Free

Software Foundation. If the Document does not specify a version number of this License, you may choose any

version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the

following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two

alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in

parallel under your choice of free software license, such as the GNU General Public License, to permit their use in

free software.

694

X11-Basic
INDEX

ABS(), 128, 143, 567

ABSOLUTE, 129, 648, 649

ACOS(), 131, 150, 153, 579

ACOSH(), 131, 151, 209

ADD, 133, 134, 240, 355, 434, 602

ADD(), 133, 133, 240, 434, 603

AFTER, 135, 274, 328, 465

ALERT, 137, 301

AND, 139, 140, 436, 444, 460, 461, 667,

668

AND(), 140, 461

Android, 13

ANDROID?, 141, 335, 561, 634, 660

ANS, 142

ARG(), 143

ARID$(), 144, 145

ARIE$(), 144, 145

ARRAYCOPY, 146

ARRAYFILL, 146, 197

ARRPTR(), 148, 631, 649

ASC(), 149, 189, 215–218

ASIN(), 131, 150, 153, 208

ASINH(), 132, 150, 580

AT(), 152

ATAN(), 153, 154, 155, 614

ATAN2(), 143, 153, 153

ATANH(), 154, 615

ATN(), 153

bas2x11basic, 27

BCHG(), 157, 158, 170, 171

BCLR(), 157, 157, 170, 171

BEEP, 159

BELL, 159

BGET, 160, 162, 166

BIN$(), 161, 346, 451, 507

BLOAD, 160, 162, 163, 169

BMOVE, 163

BOTTOMW, 313, 621

BOUNDARY, 164

BOX, 165, 466, 485, 513

BPUT, 160, 166, 169

BREAK, 167, 206, 241, 279, 280, 329,

398, 523, 556

BROKER, 168, 498, 605

BSAVE, 162, 163, 169, 478

BSET(), 157, 158, 170, 171

BTST(), 170, 171

BWTD$(), 172, 173

BWTE$(), 172, 173, 203

BYTE(), 174, 180, 608, 661

bytecode, 21, 23

C, 24

CALL, 176, 178, 276, 387

CALL(), 177, 177, 179, 277

CALL$(), 179

CALLD(), 178

CARD(), 174, 180, 608, 661

CASE, 181, 206, 259, 556

CBRT(), 182

CEIL(), 183

CHAIN, 184, 390, 414

CHDIR, 185, 239, 419, 535

CHMOD, 186

CHR$(), 138, 149, 188

CINT(), 190, 306, 365

CIRCLE, 191, 250, 468

CLEAR, 192, 437

CLEARW, 193, 196

CLIP, 194

CLOSE, 195, 205, 370, 457, 472, 558,

695

INDEX INDEX

622, 636

CLOSEW, 193, 196, 313, 459

CLR, 197, 263

CLS, 198

COLOR, 191, 193, 199, 200, 230, 232,

292, 321, 466, 468, 470, 476, 479,

481–483, 485, 502

COLOR(), 492

COLOR_RGB(), 199, 200, 321

COLS, 152, 201, 490, 491, 542

COMBIN(), 202, 284, 647

command line parameters, 18

Compiling, 8

COMPRESS$(), 203, 254, 633

CONJ(), 204, 353, 515

CONNECT, 205, 558

CONT, 545, 599

context menu, 13

CONTINUE, 206

COPY_AREA, 320

COPYAREA, 207, 304

COS(), 131, 208, 209, 317, 471, 579

COSH(), 132, 208

CRC(), 210, 211, 344

CRC16(), 211

cross compiling, 9

CRSCOL, 152, 201, 212, 393, 490, 491,

542

CRSLIN, 152, 201, 212, 393, 490, 491,

542

CTIMER, 213, 598, 619

CURVE, 214

CVA(), 215, 420

CVD(), 216, 216, 420

CVF(), 215, 216, 216, 217, 218, 420

CVI(), 149, 217, 218, 244, 420

CVL(), 149, 215–217, 217, 420

CVS(), 149, 218, 420

DATA, 220, 514, 525

DATE$, 221, 372, 373, 618, 619, 635

Debian, 6

DEC, 222, 355

DECLOSE$(), 223, 252

DECRYPT$(), 224, 254

DEFAULT, 181, 206, 225, 259, 556

DEFFILL, 191, 226, 229, 466, 468, 470,

481, 485

DEFFN, 227, 315

DEFLINE, 226, 228, 230, 232, 292, 384,

402, 482, 483

DEFMARK, 230

DEFMOUSE, 231, 348

DEFTEXT, 226, 232, 402, 617

DEG(), 143, 233, 506

DELAY, 234, 465

desktop shortcuts, 17

DET(), 235, 366, 584

DEVICE(), 236

DIM, 146, 147, 237, 238, 263, 586, 631

DIM?, 148

DIM?(), 237, 238, 631

DIR$(), 185, 239, 474

DIV, 133, 240, 421, 434, 602

DIV(), 134, 240, 367, 434

DO, 241, 280, 398, 523, 638, 658, 659

DOWNTO, 242, 299

DPEEK(), 243, 244

DPOKE, 243, 243, 401, 480

DRAW, 245, 384

DUMP, 246, 475

ECHO, 248, 625, 626

EDIT, 249

Editor, 19

696

INDEX INDEX

ELLIPSE, 191, 250, 470

ELSE, 251, 257, 352

ELSE IF, 251, 257

ENCLOSE$(), 223, 252

ENCRYPT$(), 224, 253, 578

END, 255, 504, 599

ENDFUNCTION, 256, 258, 315, 528

ENDIF, 251, 257, 352

ENDPROCEDURE, 258

ENDSELECT, 181, 259, 556

ENV$(), 239, 260, 562

EOF(), 261, 520, 554

EQV, 262, 354

ERASE, 237, 263

ERR, 264, 265, 266

ERR$(), 264, 265

ERROR, 264, 266, 455, 527

EVAL, 267, 268

EVAL(), 267, 267

EVEN(), 269, 452

EVENT, 270, 272, 375, 426

EVENT?(), 271, 272, 375, 426

EVERY, 136, 273, 328, 465

example programs, 17

EXEC, 177, 178, 275, 277

EXEC(), 276, 276

EXIST(), 278, 359, 423, 440, 457

EXIT, 279, 280

EXIT IF, 167, 241, 279, 280, 329, 398,

523

EXP(), 209, 281, 282, 395, 397, 471

EXPM1(), 282

FACT(), 202, 284, 647

FALSE, 141, 142, 262, 285, 354, 627

FATAL, 286, 455

FFT, 287, 288

FFT(), 288

FIB(), 289, 404, 487

FILEEVENT$, 290, 655

FILESELECT, 291, 389, 666, 669

FILL, 292

FIT, 293, 294, 295

FIT_LINEAR, 293, 294, 295

FIT_POLY, 293, 294, 295

FIX(), 296, 297, 365, 541, 628

FLOOR(), 297, 541, 628

FLUSH, 298

FOR, 242, 280, 299, 438

FORK(), 300, 472, 591

FORM INPUT AS, 362

FORM_ALERT(), 138, 301

FORM_CENTER(), 302

FORM_DIAL(), 303

FORM_DO(), 305, 544

FRAC(), 190, 296, 306, 365, 628

framebuffer, 9

FREE, 307, 516

FREE(), 406

FREEFILE(), 308

FSEL_INPUT(), 291

FSFIRST$(), 309, 312

FSNEXT$(), 311, 312

FULLW, 313

FUNCTION, 227, 256, 314, 495, 528,

646

GAMMA(), 284, 317, 383

GASDEV, 508, 509, 511

GASDEV(), 318, 536

GCD(), 319, 378, 439

GET, 207, 304, 320, 478, 500, 566

GET_COLOR(), 321

GET_GEOMETRY, 165, 322, 325

697

INDEX INDEX

GET_LOCATION, 323

GET_SCREENSIZE, 325

GFA-Basic, 27

gfalist, 27

GLOB(), 326, 364, 408, 519

GOLOR_RGB(), 340

GOSUB, 227, 329, 453, 455, 495, 528,

651

GOSUB ABBREV. , 328

GOTO, 328, 329, 453, 454, 527

GPIO, 332, 335

GPIO(), 333, 334, 335, 561

GPIO?, 333, 334

GPIO_SET, 334

GPRINT, 152, 330, 340, 490, 491

GPS, 324, 335, 336, 337–339, 559–561

GPS?, 334, 336, 337

GPS_ALT, 324, 336–338, 338, 339

GPS_LAT, 324, 336–338, 338, 339

GPS_LON, 324, 336–338, 339

GRAPHMODE, 207, 340, 502

GRAY(), 341

HASH$(), 210, 211, 343, 578

HELP, 246, 345

HEX$(), 161, 346, 451, 507

HIDEK, 347, 574

HIDEM, 231, 348, 575

HOME, 349

HYPOT(), 350

IDE, 13

IF, 139, 251, 257, 280, 352, 556

IMAG(), 143, 204, 353, 515

IMP, 262, 354

INC, 222, 355

INFOW, 356, 620

INKEY$, 357

INLINE$(), 358

INODE(), 359, 423, 440

INP(), 357, 360, 361, 363, 462

INP?(), 272, 361

INP%(), 360

INP&(), 360

INPUT, 162, 362, 363, 385, 457

INPUT$(), 162, 360, 363, 386

INSTR(), 327, 364, 408, 519, 524, 532,

613

INT(), 183, 190, 296, 297, 306, 365, 541

INV(), 235, 366, 584

INVERT(), 367, 484

IOCTL(), 368

JULDATE$(), 372, 373

JULIAN(), 372, 373

KEYEVENT, 271, 272, 357, 375, 426

KILL, 376, 522

LCM(), 319, 378

LEFT$(), 379, 417, 530

LEFTOF$(), 380

LEN(), 210, 381

LET, 382, 607

LGAMMA(), 317, 383

LINE, 199, 214, 229, 245, 384, 476, 482,

551

LINEINPUT, 362, 385, 386, 457

LINEINPUT$(), 385

LINK, 195, 387, 609, 636

Linux, 10

LIST, 246, 388, 475

LISTSELECT(), 389

LN(), 281, 395, 397

LOAD, 16, 184, 249, 390, 414, 545, 547,

666

698

INDEX INDEX

LOC(), 391, 394, 520, 554

LOCAL, 315, 392, 495

LOCATE, 152, 393

LOF(), 391, 394, 457, 520, 554, 581

LOG(), 281, 395, 396, 397

LOG10(), 395

LOG1P(), 282, 397

LOGB(), 281, 396

LOOP, 241, 398, 523

LOWER$(), 399, 632, 639

LPEEK(), 243, 244, 400

LPOKE, 401, 480

LTEXT, 232, 402, 403

LTEXTLEN(), 402, 403

LUCNUM(), 289, 404, 487

MALLOC(), 162, 307, 406, 416, 430, 516

MAP, 431, 637

MATCH(), 327, 364, 407, 519

MAX(), 409, 418

MENU, 410, 411, 413

MENUDEF, 410, 411, 412

MENUKILL, 411, 412

MENUSET, 411, 413

MERGE, 184, 390, 414

MFREE, 416

MFREE(), 406

MID$(), 379, 380, 417, 530, 531

MIN(), 409, 418

MKA$(), 215, 420

MKD$(), 216, 420

MKDIR, 185, 419, 535

MKF$(), 216, 420

MKI$(), 217, 243, 420

MKL$(), 218, 420

MKS$(), 218, 420

MOD, 421, 421

MOD(), 421, 421

MODE(), 422, 440

MOTIONEVENT, 271, 272, 424

MOUSE, 424, 425, 426, 428, 565

MOUSEEVENT, 271, 272, 375, 424, 426,

428

MOUSEK, 424–426, 427

MOUSES, 427

MOUSEX, 424–426, 427

MOUSEY, 424–426, 427

MOVEW, 313, 325, 429, 459, 582, 621

MSHRINK(), 430

MSYNC, 431

MTFD$(), 432, 433

MTFE$(), 203, 432, 433

MUL, 133, 240, 434, 434, 602

MUL(), 134, 240, 434, 434

NAND, 139, 436, 442, 444, 460, 667

NEW, 192, 437

NEXT, 242, 299, 438

NEXTPRIME(), 439

NLINK(), 440

NOOP, 441

NOP, 441

NOR, 436, 442, 444, 460

NOROOTWINDOW, 443

NOT, 139, 262, 354, 436, 442, 444, 460,

667

OBJ_DRAW(), 544

OBJC_ADD, 446, 447

OBJC_DELETE, 446, 446

OBJC_DRAW(), 302, 305, 448, 449

OBJC_FIND(), 448, 449, 450

OBJC_OFFSET(), 450

OCT$(), 161, 346, 451, 507

ODD(), 269, 452

699

INDEX INDEX

ON * GOSUB, 453

ON * GOTO, 453

ON BREAK, 454

ON ERROR, 454, 454, 527

ON ERROR GOSUB, 266

OPEN, 187, 195, 205, 261, 278, 308,

363, 370, 376, 456, 472, 517, 522,

558, 622

OPENW, 313, 429, 459, 582, 620, 640

Operator: =, 607

OR, 139, 442, 444, 460, 461, 667

OR(), 140, 461, 668

OUT, 360, 462, 501

OUT?(), 558

PARAM$(), 464

PAUSE, 234, 465, 588

PBOX, 164, 165, 226, 466, 485, 513

PC, 467, 488, 589, 623

PCIRCLE, 164, 191, 468, 470

PEEK(), 163, 243, 244, 400, 401, 469,

480, 648, 649

PELLIPSE, 250, 470

PI, 142, 471

PIPE, 472

PLAYSOUND, 473, 474, 588, 593, 657

PLAYSOUNDFILE, 474

PLIST, 246, 388, 475

PLOT, 245, 384, 476, 479, 497

PNGDECODE$(), 477, 478, 500

PNGENCODE$(), 477, 478

POINT(), 476, 479, 497

POKE, 163, 244, 400, 401, 469, 480,

648, 649

POLYFILL, 481, 482, 483

POLYLINE, 214, 481, 482, 483, 551

POLYMARK, 230, 481, 482, 483

POWM(), 484

PRBOX, 485, 513

PRED(), 486, 606

PRG$(), 388, 488

PRIMORIAL(), 404, 487

PRINT, 152, 198, 298, 331, 362, 457,

462, 489

PRINT AT(), 201, 212, 349, 393, 489,

490, 542

PRINT COLOR(), 489, 491

PRINT SPC(), 489

PRINT TAB(), 489

PRINT TAB() SPC(), 491

PRINT USING, 493, 600, 642

PROCEDURE, 315, 328, 494, 528, 646

PROGRAM, 496

PTST(), 497

PUBLISH, 168, 498, 605

PUT, 207, 304, 320, 477, 499, 502, 566

PUT_BITMAP, 358, 500, 502, 595

PUTBACK, 501

QUIT, 255, 279, 504, 599

RAD(), 233, 506

RADIX$(), 161, 346, 451, 507

RAND(), 508, 597

RANDOM(), 509, 510, 536, 597

RANDOMIZE, 508, 509, 511, 512, 536,

597

RBOX, 466, 513

READ, 220, 514, 525

REAL(), 143, 204, 353, 515

REALLOC, 516

REALLOC(), 406, 430

RECEIVE, 205, 517, 558

REGEXP(), 327, 364, 408, 518

RELSEEK, 520, 554

700

INDEX INDEX

REM, 496

REM ABBREV. ’, 521

RENAME, 522

REPEAT, 280, 523, 638

REPLACE$(), 524, 624, 670

RESTORE, 220, 514, 525

RESUME, 286, 455, 526, 528

RETURN, 256, 258, 279, 315, 328, 495,

528

REVERSE$(), 529

RIGHT$(), 379, 417, 530

RIGHTOF$(), 380, 531, 531

RINSTR(), 327, 364, 408, 519, 532

RLD$(), 533, 534

RLE$(), 203, 533, 534

RMDIR, 185, 376, 419, 535

RND(), 318, 508, 509, 511, 512, 536,

597

ROL(), 537, 540, 577

ROOT(), 539

ROOTWINDOW, 443, 459, 538, 640

ROR(), 537, 540, 577

ROUND(), 190, 296, 306, 365, 541

ROWS, 152, 201, 490, 491, 542

RPM, 5

RSRC_FREE, 543, 544

RSRC_LOAD, 543, 544

RUN, 184, 545, 669

SAVE, 249, 547

SAVESCREEN, 548, 549

SAVEWINDOW, 548, 549, 566

SCOPE, 550

SCREEN, 552

SEEK, 457, 520, 554

SELECT, 181, 206, 225, 259, 555

SEND, 205, 517, 557

SENSOR, 335–337, 559, 560, 561

SENSOR(), 559, 560, 561

SENSOR?, 334, 335, 559, 560, 561

SETENV, 260, 562

SETFONT, 331, 563, 617

SETMOUSE, 428, 565

SGET, 304, 320, 478, 549, 566, 595

SGN(), 128, 567

SHELL, 276, 568

shell, 10

SHL(), 537, 569, 577

SHM_ATTACH(), 570, 571, 573

SHM_DETACH, 570, 571

SHM_FREE, 570, 572, 573

SHM_MALLOC(), 570–572, 573

SHOWK, 347, 574

SHOWM, 231, 348, 575

SHOWPAGE, 322, 576, 653

SHR(), 540, 569, 577

SIGN$(), 578, 652

SIN(), 150, 208, 317, 383, 471, 579, 580,

614, 615

SINH(), 151, 580

SIZE(), 581

SIZEW, 313, 429, 459, 582

SOLVE, 295

SOLVE(), 235, 366, 583

SORT, 585

SOUND, 159, 473, 474, 587, 657

SP, 467, 589

SPACE$(), 590, 601

SPAWN, 300, 328, 591

SPC(), 152

SPEAK, 592

SPLIT, 327, 594, 662–664

SPUT, 304, 566, 595

SQR(), 596

701

INDEX INDEX

SQRT(), 182, 350, 539, 596

SRAND(), 597

STEP, 242, 299

STIMER, 213, 598, 619

STOP, 206, 255, 545, 599

STR$(), 346, 451, 493, 600, 642, 644

STRING$(), 590, 601

SUB, 133, 240, 434, 602, 603

SUB(), 134, 240, 434, 602

SUBSCRIBE, 168, 498, 604

SUCC(), 606

Support, 9

SWAP, 607

SWAP(), 174, 180, 607, 661

SYM_ADR(), 387, 609

syntax highlighting, 20

SYSTEM, 276, 568, 610, 611

SYSTEM$(), 277, 610, 610

TAB(), 152

TALLY(), 613

TAN(), 579, 614, 615

TANH(), 614, 615

TERMINALNAME$, 616

TERMINALNAME$(), 616

TEXT, 232, 331, 340, 402, 564, 617

TIME$, 221, 618, 619, 635

TIMER, 213, 512, 598, 618, 619, 635

TITLEW, 356, 429, 459, 620

TO, 242

TOPW, 313, 621

TOUCH, 622

TRACE, 488

TRACE$, 488, 623

TRIM$(), 529, 624, 670

TROFF, 248, 623, 625, 626

TRON, 248, 488, 623, 625, 626

TRUE, 141, 142, 262, 285, 354, 627

TRUNC(), 190, 296, 306, 365, 541, 628

TT?, 660

TYP?(), 629

UBOUND(), 148, 631

UCASE$(), 632, 639

UNCOMPRESS$(), 203, 633

UNIX, 10

UNIX?, 141, 634, 660

UNIXDATE$(), 619, 635

UNIXTIME$(), 618, 619, 635

UNLINK, 387, 609, 636

UNMAP, 431, 637

UNTIL, 523, 638

UPPER$(), 399, 529, 632, 639, 670

USEWINDOW, 459, 538, 640

USING$(), 493, 600, 641

VAL(), 600, 644, 645

VAL?(), 644, 644

VAR, 130, 328, 646

VARIAT(), 202, 284, 647

VARLEN(), 648, 649

VARPTR(), 130, 148, 648, 649

VERSION, 650

VGA-Version of X11-Basic, 553

VOID ABBREV. , 651

VRFY(), 578, 652

VSYNC, 576, 653

VT100, 14

WATCH, 290, 655

WAVE, 588, 593, 656

WEND, 658, 659

WHILE, 241, 280, 523, 658, 659

WIN32?, 141, 634, 660

WORD(), 174, 180, 608, 661

702

INDEX INDEX

WORD$(), 594, 662

WORT_SEP, 138, 524, 594, 663

WORT_SEP(), 662, 663, 664

xb2c, 22

xbbc, 22, 24

xbc, 25

xbvm, 22

XLOAD, 291, 390, 666, 669

XOR, 139, 262, 354, 442, 460, 667, 668

XOR(), 668

XRUN, 291, 666, 669

XTRIM$(), 624, 670

703

INDEX INDEX

704

X11-Basic
ACKNOWLEDGEMENTS

Thanks to all people, who helped me to realize this package.

Many thanks to the developers of GFA-Basic. This basic made me start pro-

gramming in the 1980s. Many ideas and most of the command syntax has been

taken from the ATARI ST implementation.

Thanks to sourceforge.net for hosting this project on the web.

I would like to thank every people who help me out with source code, patches,

program examples, bug tracking, help and documentation writing, financial sup-

port, judicious remarks, and so on...

And here thanks to people, who helped me recently:

in 2012: * Marcos Cruz (beta testing and bug fixing) * Bernhard Rosenkraenzer

(send me a patch for 64bit version)

in 2013: * Matthias Vogl (va_copy patch for 64bit version) * Eckhard Kruse (for

permission to include ballerburg.bas in the samples) * Stewart C. Russell (helped

me fix some compilation bugs on Raspberry PI) * Marcos Cruz (beta testing and

bug fixing) * James V. Fields (beta testing and correcting the manual)

in 2014: * John Clemens, Slawomir Donocik, Izidor Cicnapuz, Christian Amler,

Marcos Cruz, Charles Rayer, Bill Hoyt, and John Sheales (beta testing and bug

fixing), Nic Warne and Duncan Roe for helpful patches for the linux target.

in 2015:

* Guillaume Tello, Wanderer, and John Sheales (beta testing and bug fixing)

in 2016: * John Sheales (beta testing and bug fixing) * bruno xxx (helping with

the compilation tutorial for Android)

in 2017: * John Sheales (beta testing and bug fixing) * David Hall (bug fixing) *

Emil Schweikerdt (bug fixing)

in 2018: * Alan (beta testing, bugfix) * John Sheales (beta testing and bug fixing)

in 2019: * Yet Another Troll (beta testing and bug fixing)

X11-Basic is build on top of many free softwares, and could not exist without

them.

X11-Basic uses the Fast discrete Fourier and cosine transforms and inverses by

Monty <xiphmont@mit.edu> released to the public domain from THE OggSQUISH

SOFTWARE CODEC.

X11-Basic uses functionallity of the gmp library, the GNU multiple precision

arithmetic library, Version 5.1.3. Copyright 1991, 1993, 1994, 1995, 1996, 1997,

1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foun-

705

INDEX INDEX

dation, Inc.

For details, see: https://gmplib.org/

X11-Basic also uses functionallity if the LAPACK library. LAPACK (Linear Alge-

bra Package) is a standard software library for numerical linear algebra.

For details, see: http://www.netlib.org/lapack/

X11-Basic uses the lodepng code for the PNG bitmap graphics support. Copy-

right (c) 2005-2013 Lode Vandevenne

X11-Basic uses a md5 algorithm Copyright (c) 2001 by Alexander Peslyak (pub-

lic domain). X11-Basic uses a sha1 algorithm Copyright (C) 2001-2003 Christophe

Devine (GPLv2+)

So I would like to thank every people involved in the following projects:

Linux GCC and all of the GNU tools, of course. The readline library. The SDL

(Simple Direct Media) library. Creator of the 8x16 font "spat_a". The Burrow-

Wheeler-Transform. And any other libraries used by X11-Basic.

Some pieces of code of X11-Basic are based on third party software:

The AES user interface routines are based on OpenGEM. The FloodFill algo-

rithm is based on xxxx. Pictograms for mousecursers and fill patterns are based

on TOS / ATARI ST. The order-0 adaptive arithmetic decoding function contains the

source code from the 1987 CACM article by Witten, Neal, and Cleary.

706

